Mahajan Sanket S, Subbarayan Ganesh, Sammakia Bahgat G
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907-2088, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056701. doi: 10.1103/PhysRevE.76.056701. Epub 2007 Nov 1.
In several recent applications, including those aimed at developing thermal interface materials, nanoparticulate systems have been proposed to improve the effective behavior of the system. While nanoparticles by themselves may have low conductivities relative to larger particles owing to interfacial resistance, their use along with larger particles is believed to enhance the percolation threshold leading to better effective behavior overall. One critical challenge in using nanoparticulate systems is the lack of knowledge regarding their thermal conductivity. In this paper, the thermal conductivity of silica clusters (or nanoparticles) as well as nanowires is determined using molecular dynamics (MD) simulations. The equilibrium MD simulations of nanoparticles using Green-Kubo relations are demonstrated to be computationally very expensive and unsuitable for such nanoscaled systems. A nonequilibrium MD method adapted from the study of Müller-Plathe is shown to be faster and more accurate. The method is first demonstrated on bulk amorphous silica (using both cubic and orthorhombic simulation cells) and silica nanowires. The thermal conductivity values are compared to those reported in the literature. The mean thermal conductivity values for bulk silica and silica nanowire were estimated to be 1.2 W/mK and 1.435 W/mK, respectively. To model nanoparticles, the Müller-Plathe technique is adapted by dividing the cluster into concentric shells so as to capture the naturally radial mode of heat transfer. The mean thermal conductivity value of a 600-atom silica nanoparticle obtained using this approach was 0.589 W/mK. This value is approximately 50-60% lower than those of bulk silica or silica nanowire.
在最近的一些应用中,包括那些旨在开发热界面材料的应用,人们提出了纳米颗粒系统来改善系统的有效性能。虽然由于界面电阻,纳米颗粒本身相对于较大颗粒可能具有较低的电导率,但人们认为将它们与较大颗粒一起使用可以提高渗流阈值,从而总体上实现更好的有效性能。使用纳米颗粒系统的一个关键挑战是缺乏关于其热导率的知识。在本文中,使用分子动力学(MD)模拟确定了二氧化硅团簇(或纳米颗粒)以及纳米线的热导率。利用格林 - 库博关系对纳米颗粒进行平衡分子动力学模拟在计算上非常昂贵,并且不适用于此类纳米尺度系统。一种改编自Müller - Plathe研究的非平衡分子动力学方法被证明更快且更准确。该方法首先在块状非晶二氧化硅(使用立方和正交模拟单元)和二氧化硅纳米线上进行了演示。将热导率值与文献中报道的值进行了比较。块状二氧化硅和二氧化硅纳米线的平均热导率值分别估计为1.2 W/mK和1.435 W/mK。为了对纳米颗粒进行建模,通过将团簇划分为同心壳层来改编Müller - Plathe技术,以便捕捉自然的径向热传递模式。使用这种方法获得的600原子二氧化硅纳米颗粒的平均热导率值为0.589 W/mK。该值比块状二氧化硅或二氧化硅纳米线的热导率值低约50 - 60%。