Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, India.
J Phys Chem B. 2021 Feb 11;125(5):1363-1368. doi: 10.1021/acs.jpcb.0c09288. Epub 2021 Feb 1.
The thermal conductivity of B-form double-stranded DNA (dsDNA) of the Drew-Dickerson sequence d(CGCGAATTCGCG) is computed using classical molecular dynamics (MD) simulations. In contrast to previous studies, which focus on a simplified 1D model or a coarse-grained model of DNA to reduce simulation times, full atomistic simulations are employed to understand the thermal conduction in B-DNA. Thermal conductivities at different temperatures from 100 to 400 K are investigated using the Einstein-Green-Kubo equilibrium and Müller-Plathe non-equilibrium formalisms. The thermal conductivity of B-DNA at room temperature is found to be 1.5 W/m·K in equilibrium and 1.225 W/m·K in the non-equilibrium approach. In addition, the denaturation regime of B-DNA is obtained from the variation of thermal conductivity with temperature. It is in agreement with previous studies using the Peyrard-Bishop-Dauxois model at a temperature of around 350 K. The quantum heat capacity () has given additional clues regarding the Debye and denaturation temperature of 12-bp B-DNA.
采用经典分子动力学(MD)模拟计算 Drew-Dickerson 序列 d(CGCGAATTCGCG) 的 B 型双链 DNA(dsDNA)的热导率。与之前的研究不同,这些研究集中在简化的 1D 模型或 DNA 的粗粒模型上,以减少模拟时间,本研究采用全原子模拟来理解 B-DNA 中的热传导。使用爱因斯坦-格林-库珀平衡和穆勒-普拉瑟非平衡形式研究了从 100 到 400 K 的不同温度下的热导率。在平衡时,B-DNA 的热导率为 1.5 W/m·K,在非平衡方法中为 1.225 W/m·K。此外,通过热导率随温度的变化得到了 B-DNA 的变性状态。它与使用 Peyrard-Bishop-Dauxois 模型在大约 350 K 的温度下的先前研究结果一致。量子热容()提供了有关 12 碱基对 B-DNA 的德拜和变性温度的更多线索。