Zhou Ling, Lin Chuan, Pang Xintao, Yang Hao, Pan Yongcai, Zhang Yuwei
Key Laboratory of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region, Hechi University, Yizhou, China.
School of Automation, Guangxi University of Science and Technology, Liuzhou, China.
Front Neurosci. 2023 Jul 25;17:1194713. doi: 10.3389/fnins.2023.1194713. eCollection 2023.
Edge detection is one of the fundamental components of advanced computer vision tasks, and it is essential to preserve computational resources while ensuring a certain level of performance. In this paper, we propose a lightweight edge detection network called the Parallel and Hierarchical Network (PHNet), which draws inspiration from the parallel processing and hierarchical processing mechanisms of visual information in the visual cortex neurons and is implemented a convolutional neural network (CNN). Specifically, we designed an encoding network with parallel and hierarchical processing based on the visual information transmission pathway of the "retina-LGN-V1" and meticulously modeled the receptive fields of the cells involved in the pathway. Empirical evaluation demonstrates that, despite a minimal parameter count of only 0.2 M, the proposed model achieves a remarkable ODS score of 0.781 on the BSDS500 dataset and ODS score of 0.863 on the MBDD dataset. These results underscore the efficacy of the proposed network in attaining superior edge detection performance at a low computational cost. Moreover, we believe that this study, which combines computational vision and biological vision, can provide new insights into edge detection model research.
边缘检测是高级计算机视觉任务的基本组成部分之一,在确保一定性能水平的同时,节约计算资源至关重要。在本文中,我们提出了一种名为并行分层网络(PHNet)的轻量级边缘检测网络,该网络从视觉皮层神经元中视觉信息的并行处理和分层处理机制中汲取灵感,并通过卷积神经网络(CNN)实现。具体而言,我们基于“视网膜-外侧膝状体-初级视觉皮层”的视觉信息传输路径设计了一个具有并行和分层处理的编码网络,并精心模拟了该路径中相关细胞的感受野。实证评估表明,尽管所提出的模型参数数量极少,仅为0.2M,但在BSDS500数据集上实现了0.781的显著ODS分数,在MBDD数据集上实现了0.863的ODS分数。这些结果强调了所提出网络在以低计算成本实现卓越边缘检测性能方面的有效性。此外,我们相信这项结合了计算视觉和生物视觉的研究能够为边缘检测模型研究提供新的见解。