Suppr超能文献

关于重构径向基函数神经网络的构建与训练

On the construction and training of reformulated radial basis function neural networks.

作者信息

Karayiannis N B, Randolph-Gips M M

机构信息

Dept. of Electr. and Comput. Eng., Univ. of Houston, TX, USA.

出版信息

IEEE Trans Neural Netw. 2003;14(4):835-46. doi: 10.1109/TNN.2003.813841.

Abstract

Presents a systematic approach for constructing reformulated radial basis function (RBF) neural networks, which was developed to facilitate their training by supervised learning algorithms based on gradient descent. This approach reduces the construction of radial basis function models to the selection of admissible generator functions. The selection of generator functions relies on the concept of the blind spot, which is introduced in the paper. The paper also introduces a new family of reformulated radial basis function neural networks, which are referred to as cosine radial basis functions. Cosine radial basis functions are constructed by linear generator functions of a special form and their use as similarity measures in radial basis function models is justified by their geometric interpretation. A set of experiments on a variety of datasets indicate that cosine radial basis functions outperform considerably conventional radial basis function neural networks with Gaussian radial basis functions. Cosine radial basis functions are also strong competitors to existing reformulated radial basis function models trained by gradient descent and feedforward neural networks with sigmoid hidden units.

摘要

提出了一种构建重构径向基函数(RBF)神经网络的系统方法,该方法旨在便于通过基于梯度下降的监督学习算法对其进行训练。这种方法将径向基函数模型的构建简化为对可允许生成函数的选择。生成函数的选择依赖于本文中引入的盲点概念。本文还介绍了一类新的重构径向基函数神经网络,即余弦径向基函数。余弦径向基函数由特殊形式的线性生成函数构建而成,并且它们在径向基函数模型中作为相似性度量的用途通过其几何解释得到了证明。在各种数据集上进行的一组实验表明,余弦径向基函数的性能明显优于具有高斯径向基函数的传统径向基函数神经网络。余弦径向基函数也是通过梯度下降训练的现有重构径向基函数模型以及具有Sigmoid隐藏单元的前馈神经网络的有力竞争对手。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验