Suppr超能文献

酸性尿素聚丙烯酰胺凝胶电泳在tRNA和氨酰tRNA合成酶研究中的多种应用。

The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases.

作者信息

Köhrer Caroline, Rajbhandary Uttam L

机构信息

Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 68-671, Cambridge, MA 02139, USA.

出版信息

Methods. 2008 Feb;44(2):129-38. doi: 10.1016/j.ymeth.2007.10.006.

Abstract

Here we describe the many applications of acid urea polyacrylamide gel electrophoresis (acid urea PAGE) followed by Northern blot analysis to studies of tRNAs and aminoacyl-tRNA synthetases. Acid urea PAGE allows the electrophoretic separation of different forms of a tRNA, discriminated by changes in bulk, charge, and/or conformation that are brought about by aminoacylation, formylation, or modification of a tRNA. Among the examples described are (i) analysis of the effect of mutations in the Escherichia coli initiator tRNA on its aminoacylation and formylation; (ii) evidence of orthogonality of suppressor tRNAs in mammalian cells and yeast; (iii) analysis of aminoacylation specificity of an archaeal prolyl-tRNA synthetase that can aminoacylate archaeal tRNA(Pro) with cysteine, but does not aminoacylate archaeal tRNA(Cys) with cysteine; (iv) identification and characterization of the AUA-decoding minor tRNA(Ile) in archaea; and (v) evidence that the archaeal minor tRNA(Ile) contains a modified base in the wobble position different from lysidine found in the corresponding eubacterial tRNA.

摘要

在此,我们描述了酸性尿素聚丙烯酰胺凝胶电泳(酸性尿素PAGE)结合Northern印迹分析在tRNA和氨酰tRNA合成酶研究中的多种应用。酸性尿素PAGE能够通过电泳分离不同形式的tRNA,这些不同形式可通过tRNA的氨酰化、甲酰化或修饰所引起的体积、电荷和/或构象变化来区分。所描述的例子包括:(i)分析大肠杆菌起始tRNA中的突变对其氨酰化和甲酰化的影响;(ii)哺乳动物细胞和酵母中抑制性tRNA正交性的证据;(iii)一种古菌脯氨酰tRNA合成酶的氨酰化特异性分析,该酶能用半胱氨酸氨酰化古菌tRNA(Pro),但不能用半胱氨酸氨酰化古菌tRNA(Cys);(iv)古菌中AUA解码的次要tRNA(Ile)的鉴定和表征;以及(v)证据表明古菌次要tRNA(Ile)在摆动位置含有一个修饰碱基,该碱基不同于相应真细菌tRNA中发现的赖氨酸idine。

相似文献

2
Discovery and characterization of tRNAIle lysidine synthetase (TilS).
FEBS Lett. 2010 Jan 21;584(2):272-7. doi: 10.1016/j.febslet.2009.11.085.
3
Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain.
Proc Natl Acad Sci U S A. 2005 May 24;102(21):7487-92. doi: 10.1073/pnas.0501003102. Epub 2005 May 13.
4
An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA.
Mol Cell. 2003 Sep;12(3):689-98. doi: 10.1016/s1097-2765(03)00346-0.
5
molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition.
Mol Cell. 2005 Jul 22;19(2):235-46. doi: 10.1016/j.molcel.2005.06.007.
8
Position of aminoacylation of individual Escherichia coli and yeast tRNAs.
Proc Natl Acad Sci U S A. 1976 Feb;73(2):405-9. doi: 10.1073/pnas.73.2.405.
9
Modified nucleosides and the chromatographic and aminoacylation behavior of tRNA(Ile) from Escherichia coli C6.
Biochim Biophys Acta. 1988 Jul 13;950(2):172-81. doi: 10.1016/0167-4781(88)90009-7.

引用本文的文献

1
A Ψ-Ψ codon-anticodon pairing in nonsense suppression and translational recoding.
Nat Chem Biol. 2025 Sep 12. doi: 10.1038/s41589-025-02025-9.
2
Strategies for detecting aminoacylation and aminoacyl-tRNA editing and in cells.
Isr J Chem. 2024 Sep;64(8-9). doi: 10.1002/ijch.202400009. Epub 2024 May 6.
3
A prophage competition element protects Salmonella from lysis.
Cell Host Microbe. 2024 Dec 11;32(12):2063-2079.e8. doi: 10.1016/j.chom.2024.10.012. Epub 2024 Nov 7.
5
infection causes dynamic alterations in tRNA modifications and their associated gene candidates in black pepper.
Comput Struct Biotechnol J. 2022 Nov 4;20:6055-6066. doi: 10.1016/j.csbj.2022.11.002. eCollection 2022.
6
Exploring the epitranscriptome by native RNA sequencing.
RNA. 2022 Nov;28(11):1430-1439. doi: 10.1261/rna.079404.122. Epub 2022 Sep 14.
7
Oligodendrocyte differentiation alters tRNA modifications and codon optimality-mediated mRNA decay.
Nat Commun. 2022 Aug 25;13(1):5003. doi: 10.1038/s41467-022-32766-3.
9
Role of a cryptic tRNA gene operon in survival under translational stress.
Nucleic Acids Res. 2021 Sep 7;49(15):8757-8776. doi: 10.1093/nar/gkab661.
10
The 3'tsRNAs are aminoacylated: Implications for their biogenesis.
PLoS Genet. 2021 Jul 29;17(7):e1009675. doi: 10.1371/journal.pgen.1009675. eCollection 2021 Jul.

本文引用的文献

1
Identification and characterization of a tRNA decoding the rare AUA codon in Haloarcula marismortui.
RNA. 2008 Jan;14(1):117-26. doi: 10.1261/rna.795508. Epub 2007 Nov 12.
2
3
Early days of tRNA research: discovery, function, purification and sequence analysis.
J Biosci. 2006 Oct;31(4):439-51. doi: 10.1007/BF02705183.
4
Aminoacyl-tRNA synthesis by pre-translational amino acid modification.
RNA Biol. 2004 May;1(1):16-20. Epub 2004 May 28.
5
tRNA's wobble decoding of the genome: 40 years of modification.
J Mol Biol. 2007 Feb 9;366(1):1-13. doi: 10.1016/j.jmb.2006.11.046. Epub 2006 Nov 15.
6
A chemical toolkit for proteins--an expanded genetic code.
Nat Rev Mol Cell Biol. 2006 Oct;7(10):775-82. doi: 10.1038/nrm2005. Epub 2006 Aug 23.
7
Expanding the genetic code.
Annu Rev Biophys Biomol Struct. 2006;35:225-49. doi: 10.1146/annurev.biophys.35.101105.121507.
8
tRNA-isoleucine-tryptophan composite gene.
Biochem Biophys Res Commun. 2006 Jan 6;339(1):37-40. doi: 10.1016/j.bbrc.2005.10.183. Epub 2005 Nov 8.
9
Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain.
Proc Natl Acad Sci U S A. 2005 May 24;102(21):7487-92. doi: 10.1073/pnas.0501003102. Epub 2005 May 13.
10
RNA-dependent cysteine biosynthesis in archaea.
Science. 2005 Mar 25;307(5717):1969-72. doi: 10.1126/science.1108329.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验