Suppr超能文献

线粒体钙信号的高钙和低钙依赖性机制。

High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling.

作者信息

Spät András, Szanda Gergo, Csordás György, Hajnóczky György

机构信息

Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.

出版信息

Cell Calcium. 2008 Jul;44(1):51-63. doi: 10.1016/j.ceca.2007.11.015. Epub 2008 Feb 19.

Abstract

The Ca(2+) coupling between endoplasmic reticulum (ER) and mitochondria is central to multiple cell survival and cell death mechanisms. Cytoplasmic [Ca(2+)] (Ca(2+)) spikes and oscillations produced by ER Ca(2+) release are effectively delivered to the mitochondria. Propagation of Ca(2+) signals to the mitochondria requires the passage of Ca(2+) across three membranes, namely the ER membrane, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). Strategic positioning of the mitochondria by cytoskeletal transport and interorganellar tethers provides a means to promote the local transfer of Ca(2+) between the ER membrane and OMM. In this setting, even >100 microM [Ca(2+)] may be attained to activate the low affinity mitochondrial Ca(2+) uptake. However, a mitochondrial [Ca(2+)] rise has also been documented during submicromolar Ca(2+) elevations. Evidence has been emerging that Ca(2+) exerts allosteric control on the Ca(2+) transport sites at each membrane, providing mechanisms that may facilitate the Ca(2+) delivery to the mitochondria. Here we discuss the fundamental mechanisms of ER and mitochondrial Ca(2+) transport, particularly the control of their activity by Ca(2+) and evaluate both high- and low-[Ca(2+)]-activated mitochondrial calcium signals in the context of cell physiology.

摘要

内质网(ER)与线粒体之间的Ca(2+)偶联对于多种细胞存活和细胞死亡机制至关重要。内质网Ca(2+)释放产生的细胞质[Ca(2+)](Ca(2+))尖峰和振荡有效地传递到线粒体。Ca(2+)信号向线粒体的传播需要Ca(2+)穿过三层膜,即内质网膜、线粒体外膜(OMM)和线粒体内膜(IMM)。通过细胞骨架运输和细胞器间连接对线粒体进行战略性定位,为促进内质网膜和线粒体外膜之间Ca(2+)的局部转移提供了一种手段。在这种情况下,甚至可以达到>100微摩尔的[Ca(2+)]来激活低亲和力的线粒体Ca(2+)摄取。然而,在亚微摩尔Ca(2+)升高期间也记录到线粒体[Ca(2+)]升高。越来越多的证据表明,Ca(2+)对每个膜上的Ca(2+)转运位点具有变构控制作用,提供了可能促进Ca(2+)向线粒体传递的机制。在这里,我们讨论内质网和线粒体Ca(2+)运输的基本机制,特别是Ca(2+)对其活性的控制,并在细胞生理学背景下评估高[Ca(2+)]和低[Ca(2+)]激活的线粒体钙信号。

相似文献

1
High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling.
Cell Calcium. 2008 Jul;44(1):51-63. doi: 10.1016/j.ceca.2007.11.015. Epub 2008 Feb 19.
4
Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection.
J Mol Biol. 2017 Mar 10;429(5):620-632. doi: 10.1016/j.jmb.2017.01.017. Epub 2017 Jan 28.
5
The ER-mitochondria interface, where Ca and cell death meet.
Cell Calcium. 2023 Jun;112:102743. doi: 10.1016/j.ceca.2023.102743. Epub 2023 Apr 25.
6
TOM70 Sustains Cell Bioenergetics by Promoting IP3R3-Mediated ER to Mitochondria Ca Transfer.
Curr Biol. 2018 Feb 5;28(3):369-382.e6. doi: 10.1016/j.cub.2017.12.047. Epub 2018 Jan 27.
7
Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis.
Cell Calcium. 2006 Nov-Dec;40(5-6):553-60. doi: 10.1016/j.ceca.2006.08.016. Epub 2006 Oct 30.
8
Mitochondrial VDAC, the Na/Ca Exchanger, and the Ca Uniporter in Ca Dynamics and Signaling.
Adv Exp Med Biol. 2017;981:323-347. doi: 10.1007/978-3-319-55858-5_13.

引用本文的文献

1
The roles of mitochondria in global and local intracellular calcium signalling.
Nat Rev Mol Cell Biol. 2025 Jan 27. doi: 10.1038/s41580-024-00820-1.
2
Systematic mapping of mitochondrial calcium uniporter channel (MCUC)-mediated calcium signaling networks.
EMBO J. 2024 Nov;43(21):5288-5326. doi: 10.1038/s44318-024-00219-w. Epub 2024 Sep 11.
3
Toward understanding the cellular control of vertebrate mineralization: The potential role of mitochondria.
Bone. 2024 Aug;185:117112. doi: 10.1016/j.bone.2024.117112. Epub 2024 May 1.
4
Supralinear Dependence of the IP Receptor-to-Mitochondria Local Ca Transfer on the Endoplasmic Reticulum Ca Loading.
Contact (Thousand Oaks). 2024 Feb 14;7:25152564241229273. doi: 10.1177/25152564241229273. eCollection 2024 Jan-Dec.
5
Mitochondrial calcium cycling in neuronal function and neurodegeneration.
Front Cell Dev Biol. 2023 Jan 24;11:1094356. doi: 10.3389/fcell.2023.1094356. eCollection 2023.
7
Calcium Signaling Regulated by Cellular Membrane Systems and Calcium Homeostasis Perturbed in Alzheimer's Disease.
Front Cell Dev Biol. 2022 Feb 25;10:834962. doi: 10.3389/fcell.2022.834962. eCollection 2022.
8
Fluoxetine affects cytosolic cAMP, ATP, Ca responses to forskolin, and survival of human ovarian granulosa tumor COV434 cells.
Korean J Physiol Pharmacol. 2021 May 1;25(3):189-195. doi: 10.4196/kjpp.2021.25.3.189.
9
Mitochondrial Calcification.
Immunometabolism. 2021;3(1). doi: 10.20900/immunometab20210008. Epub 2021 Jan 29.
10
Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium.
Int J Mol Sci. 2021 Feb 2;22(3):1498. doi: 10.3390/ijms22031498.

本文引用的文献

3
ER-mitochondria communication. How privileged?
Physiology (Bethesda). 2007 Aug;22:261-8. doi: 10.1152/physiol.00017.2007.
4
Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake.
Cell Calcium. 2008 Mar;43(3):250-9. doi: 10.1016/j.ceca.2007.05.013. Epub 2007 Jul 12.
5
VDAC closure increases calcium ion flux.
Biochim Biophys Acta. 2007 Oct;1768(10):2510-5. doi: 10.1016/j.bbamem.2007.06.002. Epub 2007 Jun 12.
6
Chain-reaction Ca(2+) signaling in the heart.
J Clin Invest. 2007 Jul;117(7):1758-62. doi: 10.1172/JCI32496.
8
Modulation of the ryanodine receptor and intracellular calcium.
Annu Rev Biochem. 2007;76:367-85. doi: 10.1146/annurev.biochem.76.053105.094237.
9
The mitochondrial ryanodine receptor in rat heart: a pharmaco-kinetic profile.
Biochim Biophys Acta. 2007 Jul;1768(7):1784-95. doi: 10.1016/j.bbamem.2007.04.011. Epub 2007 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验