Suppr超能文献

为了理解脊椎动物矿化的细胞控制:线粒体的潜在作用。

Toward understanding the cellular control of vertebrate mineralization: The potential role of mitochondria.

机构信息

Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.

Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.

出版信息

Bone. 2024 Aug;185:117112. doi: 10.1016/j.bone.2024.117112. Epub 2024 May 1.

Abstract

This review examines the possible role of mitochondria in maintaining calcium and phosphate ion homeostasis and participating in the mineralization of bone, cartilage and other vertebrate hard tissues. The paper builds on the known structural features of mitochondria and the documented observations in these tissues that the organelles contain calcium phosphate granules. Such deposits in mitochondria putatively form to buffer excessively high cytosolic calcium ion concentrations and prevent metabolic deficits and even cell death. While mitochondria protect cytosolic enzyme systems through this buffering capacity, the accumulation of calcium ions by mitochondria promotes the activity of enzymes of the tricarboxylic acid (TCA/Krebs) cycle, increases oxidative phosphorylation and ATP synthesis, and leads to changes in intramitochondrial pH. These pH alterations influence ion solubility and possibly the transitions and composition in the mineral phase structure of the granules. Based on these considerations, mitochondria are proposed to support the mineralization process by providing a mobile store of calcium and phosphate ions, in smaller cluster or larger granule form, while maintaining critical cellular activities. The rise in the mitochondrial calcium level also increases the generation of citrate and other TCA cycle intermediates that contribute to cell function and the development of extracellular mineral. This paper suggests that another key role of the mitochondrion, along with the effects just noted, is to supply phosphate ions, derived from the breakdown of ATP, to endolysosomes and autophagic vesicles originating in the endoplasmic reticulum and Golgi and at the plasma membrane. These many separate but interdependent mitochondrial functions emphasize the critical importance of this organelle in the cellular control of vertebrate mineralization.

摘要

这篇综述探讨了线粒体在维持钙和磷酸盐离子稳态以及参与骨、软骨和其他脊椎动物硬组织矿化中的可能作用。本文基于线粒体的已知结构特征和这些组织中细胞器内含有钙磷酸盐颗粒的已有观察结果。这些线粒体中的沉积物推测是为了缓冲过高的细胞质钙离子浓度,防止代谢缺陷甚至细胞死亡。虽然线粒体通过这种缓冲能力保护细胞质酶系统,但线粒体对钙离子的积累会促进三羧酸(TCA/克雷布斯)循环的酶的活性,增加氧化磷酸化和 ATP 合成,并导致线粒体内部 pH 的变化。这些 pH 变化会影响离子的溶解度,并可能影响颗粒中矿物相结构的转变和组成。基于这些考虑,线粒体通过提供较小簇或较大颗粒形式的钙和磷酸盐离子的可移动储存库,同时维持关键的细胞活性,被提出支持矿化过程。线粒体钙离子水平的升高也会增加柠檬酸和其他 TCA 循环中间产物的生成,这些产物有助于细胞功能和细胞外矿物质的发育。本文提出,线粒体的另一个关键作用,除了刚刚提到的作用外,是向源自内质网和高尔基体以及质膜的内溶酶体和自噬小泡提供磷酸根离子,这些磷酸根离子来源于 ATP 的分解。这些许多独立但相互依存的线粒体功能强调了该细胞器在脊椎动物矿化的细胞控制中的关键重要性。

相似文献

1
Toward understanding the cellular control of vertebrate mineralization: The potential role of mitochondria.
Bone. 2024 Aug;185:117112. doi: 10.1016/j.bone.2024.117112. Epub 2024 May 1.
3
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
6
Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD).
Cochrane Database Syst Rev. 2018 Aug 22;8(8):CD006023. doi: 10.1002/14651858.CD006023.pub3.
7
Physical activity programs for promoting bone mineralization and growth in preterm infants.
Cochrane Database Syst Rev. 2014 Apr 22;2014(4):CD005387. doi: 10.1002/14651858.CD005387.pub3.

引用本文的文献

1
Phosphate in Physiological and Pathological Mineralization: Important yet Often Unheeded.
MedComm (2020). 2025 Jul 13;6(7):e70298. doi: 10.1002/mco2.70298. eCollection 2025 Jul.
2
Targeting mitochondria in bone and cartilage diseases: A narrative review.
Redox Biol. 2025 Jun;83:103667. doi: 10.1016/j.redox.2025.103667. Epub 2025 May 7.
4
Axonal Energy Crisis and Calcium Phosphate Dysregulation as Pathogenesis of Optic Disc Drusen.
Aging Dis. 2024 Sep 30;16(5):2739-2751. doi: 10.14336/AD.2024.0459.

本文引用的文献

1
Intracellular energy production and distribution in hypoxia.
J Biol Chem. 2023 Sep;299(9):105103. doi: 10.1016/j.jbc.2023.105103. Epub 2023 Jul 26.
2
The mechanism of biomineralization: Progress in mineralization from intracellular generation to extracellular deposition.
Jpn Dent Sci Rev. 2023 Dec;59:181-190. doi: 10.1016/j.jdsr.2023.06.005. Epub 2023 Jun 24.
3
The Endoplasmic Reticulum-Mitochondria Encounter Structure and its Regulatory Proteins.
Contact (Thousand Oaks). 2021 Dec 6;4:25152564211064491. doi: 10.1177/25152564211064491. eCollection 2021 Jan-Dec.
4
A phosphate-sensing organelle regulates phosphate and tissue homeostasis.
Nature. 2023 May;617(7962):798-806. doi: 10.1038/s41586-023-06039-y. Epub 2023 May 3.
6
Deciphering the functions of Stromal Interaction Molecule-1 in amelogenesis using AmelX-iCre mice.
Front Physiol. 2023 Mar 1;14:1100714. doi: 10.3389/fphys.2023.1100714. eCollection 2023.
7
Calcium Overload and Mitochondrial Metabolism.
Biomolecules. 2022 Dec 17;12(12):1891. doi: 10.3390/biom12121891.
8
A specialized metabolic pathway partitions citrate in hydroxyapatite to impact mineralization of bones and teeth.
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2212178119. doi: 10.1073/pnas.2212178119. Epub 2022 Nov 2.
9
Liquid-liquid phase separation in tumor biology.
Signal Transduct Target Ther. 2022 Jul 8;7(1):221. doi: 10.1038/s41392-022-01076-x.
10
GRP75-faciliated Mitochondria-associated ER Membrane (MAM) Integrity controls Cisplatin-resistance in Ovarian Cancer Patients.
Int J Biol Sci. 2022 Apr 11;18(7):2914-2931. doi: 10.7150/ijbs.71571. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验