Suppr超能文献

溶酶体贮积病中的线粒体钙离子稳态

Mitochondrial Ca2+ homeostasis in lysosomal storage diseases.

作者信息

Kiselyov Kirill, Muallem Shmuel

机构信息

Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.

出版信息

Cell Calcium. 2008 Jul;44(1):103-11. doi: 10.1016/j.ceca.2007.12.005. Epub 2008 Feb 1.

Abstract

Lysosomal storage diseases (LSDs) are a class of genetic disorders in which proteins responsible for digestion or absorption of endocytosed material do not function or do not localize properly. The resulting cellular "indigestion" causes buildup of intracellular storage inclusions that contain unprocessed lipids and proteins that form macromolecular complexes. The buildup of storage material is associated with degenerative processes that are observed in all LSDs, albeit the correlation between the amount of storage inclusions and the severity of the degenerative processes is not always evident. The latter suggests that a specific mechanism set in motion by aberrant lysosomal function drives the degenerative processes in LSDs. It is becoming increasingly clear that in addition to their function in degrading endocytosed material, lysosomes are essential housekeeping organelles responsible for maintaining healthy population of intracellular organelles, in particular mitochondria. The present review surveys the current knowledge on the lysosomal-mitochondrial axis and its possible role as a contributing factor to mitochondrial Ca(2+) homeostasis and to cell death in LSDs.

摘要

溶酶体贮积症(LSDs)是一类遗传性疾病,其中负责消化或吸收内吞物质的蛋白质无法正常发挥功能或定位。由此产生的细胞“消化不良”会导致细胞内储存内含物的积累,这些内含物包含未加工的脂质和形成大分子复合物的蛋白质。储存物质的积累与在所有溶酶体贮积症中观察到的退行性过程相关,尽管储存内含物的数量与退行性过程的严重程度之间的相关性并不总是明显。后者表明,由异常溶酶体功能引发的特定机制驱动了溶酶体贮积症中的退行性过程。越来越清楚的是,除了在降解内吞物质方面的功能外,溶酶体还是维持细胞内细胞器(特别是线粒体)健康群体的重要管家细胞器。本综述概述了关于溶酶体 - 线粒体轴及其作为溶酶体贮积症中线粒体钙(2+)稳态和细胞死亡的促成因素的可能作用的当前知识。

相似文献

1
Mitochondrial Ca2+ homeostasis in lysosomal storage diseases.
Cell Calcium. 2008 Jul;44(1):103-11. doi: 10.1016/j.ceca.2007.12.005. Epub 2008 Feb 1.
2
Mitochondrial Dysfunction and Neurodegeneration in Lysosomal Storage Disorders.
Trends Mol Med. 2017 Feb;23(2):116-134. doi: 10.1016/j.molmed.2016.12.003. Epub 2017 Jan 19.
3
Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases.
J Cell Sci. 2019 Jan 16;132(2):jcs221739. doi: 10.1242/jcs.221739.
4
Lysosomal positioning diseases: beyond substrate storage.
Open Biol. 2022 Oct;12(10):220155. doi: 10.1098/rsob.220155. Epub 2022 Oct 26.
5
Aberrant Ca2+ handling in lysosomal storage disorders.
Cell Calcium. 2010 Feb;47(2):103-11. doi: 10.1016/j.ceca.2009.12.007. Epub 2010 Jan 6.
6
Autophagy, mitochondria and cell death in lysosomal storage diseases.
Autophagy. 2007 May-Jun;3(3):259-62. doi: 10.4161/auto.3906. Epub 2007 May 23.
7
Neurodegenerative lysosomal disorders: a continuum from development to late age.
Autophagy. 2008 Jul;4(5):590-9. doi: 10.4161/auto.6259. Epub 2008 May 12.
8
The intersection of lysosomal and endoplasmic reticulum calcium with autophagy defects in lysosomal diseases.
Neurosci Lett. 2019 Apr 1;697:10-16. doi: 10.1016/j.neulet.2018.04.049. Epub 2018 Apr 25.
9
Autophagy in lysosomal storage disorders.
Autophagy. 2012 May 1;8(5):719-30. doi: 10.4161/auto.19469.

引用本文的文献

2
Lysosomes in retinal health and disease.
Trends Neurosci. 2023 Dec;46(12):1067-1082. doi: 10.1016/j.tins.2023.09.006. Epub 2023 Oct 16.
4
NDST3 deacetylates α-tubulin and suppresses V-ATPase assembly and lysosomal acidification.
EMBO J. 2021 Oct 1;40(19):e107204. doi: 10.15252/embj.2020107204. Epub 2021 Aug 25.
6
Interplay Between Lipid Metabolism and Autophagy.
Front Cell Dev Biol. 2020 Jun 3;8:431. doi: 10.3389/fcell.2020.00431. eCollection 2020.
7
Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease.
Front Physiol. 2017 Nov 30;8:982. doi: 10.3389/fphys.2017.00982. eCollection 2017.
8
Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases.
J Inherit Metab Dis. 2017 Sep;40(5):631-640. doi: 10.1007/s10545-017-0048-0. Epub 2017 May 5.
9
Mitochondrial adventures at the organelle society.
Biochem Biophys Res Commun. 2018 May 27;500(1):87-93. doi: 10.1016/j.bbrc.2017.04.124. Epub 2017 Apr 26.
10
Altered Cellular Homeostasis in Murine MPS I Fibroblasts: Evidence of Cell-Specific Physiopathology.
JIMD Rep. 2017;36:109-116. doi: 10.1007/8904_2017_5. Epub 2017 Feb 21.

本文引用的文献

1
A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19583-8. doi: 10.1073/pnas.0709846104. Epub 2007 Nov 28.
2
Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice.
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18321-6. doi: 10.1073/pnas.0709096104. Epub 2007 Nov 7.
3
Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype.
J Biol Chem. 2007 Dec 14;282(50):36138-42. doi: 10.1074/jbc.C700190200. Epub 2007 Oct 25.
4
Gene therapy for mucopolysaccharidosis.
Expert Opin Biol Ther. 2007 Sep;7(9):1333-45. doi: 10.1517/14712598.7.9.1333.
6
Mitochondria and neurodegeneration.
Biosci Rep. 2007 Jun;27(1-3):87-104. doi: 10.1007/s10540-007-9038-z.
7
Autophagy, mitochondria and cell death in lysosomal storage diseases.
Autophagy. 2007 May-Jun;3(3):259-62. doi: 10.4161/auto.3906. Epub 2007 May 23.
9
Mitochondrial trafficking and morphology in healthy and injured neurons.
Prog Neurobiol. 2006 Dec;80(5):241-68. doi: 10.1016/j.pneurobio.2006.09.003. Epub 2006 Dec 26.
10
Mitochondrial aberrations in mucolipidosis Type IV.
J Biol Chem. 2006 Dec 22;281(51):39041-50. doi: 10.1074/jbc.M607982200. Epub 2006 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验