Suppr超能文献

尼曼-匹克病中的溶酶体与线粒体联系

Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease.

作者信息

Torres Sandra, Balboa Elisa, Zanlungo Silvana, Enrich Carlos, Garcia-Ruiz Carmen, Fernandez-Checa Jose C

机构信息

Department of Cell Death and Proliferation, Intituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.

Liver Unit and Hospital Clinc I Provincial, Centro de Investigación Biomédica en Red (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.

出版信息

Front Physiol. 2017 Nov 30;8:982. doi: 10.3389/fphys.2017.00982. eCollection 2017.

Abstract

Lysosomal storage disorders (LSD) are characterized by the accumulation of diverse lipid species in lysosomes. Niemann-Pick type A/B (NPA/B) and type C diseases Niemann-Pick type C (NPC) are progressive LSD caused by loss of function of distinct lysosomal-residing proteins, acid sphingomyelinase and NPC1, respectively. While the primary cause of these diseases differs, both share common biochemical features, including the accumulation of sphingolipids and cholesterol, predominantly in endolysosomes. Besides these alterations in lysosomal homeostasis and function due to accumulation of specific lipid species, the lysosomal functional defects can have far-reaching consequences, disrupting trafficking of sterols, lipids and calcium through membrane contact sites (MCS) of apposed compartments. Although MCS between endoplasmic reticulum and mitochondria have been well studied and characterized in different contexts, emerging evidence indicates that lysosomes also exhibit close proximity with mitochondria, which translates in their mutual functional regulation. Indeed, as best illustrated in NPC disease, alterations in the lysosomal-mitochondrial liaisons underlie the secondary accumulation of specific lipids, such as cholesterol in mitochondria, resulting in mitochondrial dysfunction and defective antioxidant defense, which contribute to disease progression. Thus, a better understanding of the lysosomal and mitochondrial interactions and trafficking may identify novel targets for the treatment of Niemann-Pick disease.

摘要

溶酶体贮积症(LSD)的特征是溶酶体中多种脂质的积累。尼曼-匹克病A型/B型(NPA/B)和C型疾病(NPC)是由不同的溶酶体驻留蛋白——酸性鞘磷脂酶和NPC1功能丧失引起的进行性LSD。虽然这些疾病的主要病因不同,但它们具有共同的生化特征,包括鞘脂和胆固醇的积累,主要在内溶酶体中。除了由于特定脂质积累导致的溶酶体稳态和功能改变外,溶酶体功能缺陷可能产生深远影响,通过相邻区室的膜接触位点(MCS)破坏固醇、脂质和钙的运输。尽管内质网和线粒体之间的MCS在不同背景下已得到充分研究和表征,但新出现的证据表明,溶酶体也与线粒体紧密相邻,这转化为它们之间的相互功能调节。事实上,正如在NPC疾病中最清楚显示的那样,溶酶体-线粒体联系的改变是特定脂质(如线粒体中的胆固醇)继发性积累的基础,导致线粒体功能障碍和抗氧化防御缺陷,这有助于疾病进展。因此,更好地理解溶酶体与线粒体的相互作用和运输可能会为尼曼-匹克病的治疗找到新的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f12f/5714892/f7ca1bf904b9/fphys-08-00982-g0001.jpg

相似文献

1
Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease.
Front Physiol. 2017 Nov 30;8:982. doi: 10.3389/fphys.2017.00982. eCollection 2017.
2
Finding pathogenic commonalities between Niemann-Pick type C and other lysosomal storage disorders: Opportunities for shared therapeutic interventions.
Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165875. doi: 10.1016/j.bbadis.2020.165875. Epub 2020 Jun 6.
3
Mitochondrial Cholesterol in Alzheimer's Disease and Niemann-Pick Type C Disease.
Front Neurol. 2019 Nov 7;10:1168. doi: 10.3389/fneur.2019.01168. eCollection 2019.
4
Improvement in lipid and protein trafficking in Niemann-Pick C1 cells by correction of a secondary enzyme defect.
Traffic. 2010 May;11(5):601-15. doi: 10.1111/j.1600-0854.2010.01046.x. Epub 2010 Feb 22.
5
Niemann-Pick type C disease: The atypical sphingolipidosis.
Adv Biol Regul. 2018 Dec;70:82-88. doi: 10.1016/j.jbior.2018.08.001. Epub 2018 Aug 28.
8
Defective Autophagy, Mitochondrial Clearance and Lipophagy in Niemann-Pick Type B Lymphocytes.
PLoS One. 2016 Oct 31;11(10):e0165780. doi: 10.1371/journal.pone.0165780. eCollection 2016.

引用本文的文献

1
Biomarker Validation in NPC1: Foundations for Clinical Trials and Regulatory Alignment.
J Inherit Metab Dis. 2025 Sep;48(5):e70075. doi: 10.1002/jimd.70075.
2
From Genes to Treatment: Literature Review and Perspectives on Acid Sphingomyelinase Deficiency in Children.
Diagnostics (Basel). 2025 Mar 21;15(7):804. doi: 10.3390/diagnostics15070804.
3
Oncological Aspects of Lysosomal Storage Diseases.
Cells. 2024 Oct 8;13(19):1664. doi: 10.3390/cells13191664.
5
Revisiting the Mitochondrial Function and Communication in Neurodegenerative Diseases.
Curr Pharm Des. 2024;30(12):902-911. doi: 10.2174/0113816128286655240304070740.
8
Role of lipids in the control of autophagy and primary cilium signaling in neurons.
Neural Regen Res. 2024 Feb;19(2):264-271. doi: 10.4103/1673-5374.377414.
9
Novel Mutation in the Feline Gene in Cats with Niemann-Pick Disease.
Animals (Basel). 2023 May 24;13(11):1744. doi: 10.3390/ani13111744.

本文引用的文献

1
Control of mitochondrial homeostasis by endocytic regulatory proteins.
J Cell Sci. 2017 Jul 15;130(14):2359-2370. doi: 10.1242/jcs.204537. Epub 2017 Jun 8.
2
Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases.
J Inherit Metab Dis. 2017 Sep;40(5):631-640. doi: 10.1007/s10545-017-0048-0. Epub 2017 May 5.
3
Mitochondrial adventures at the organelle society.
Biochem Biophys Res Commun. 2018 May 27;500(1):87-93. doi: 10.1016/j.bbrc.2017.04.124. Epub 2017 Apr 26.
4
Mitochondria-organelle contact sites: the plot thickens.
Biochem Soc Trans. 2017 Apr 15;45(2):477-488. doi: 10.1042/BST20160130.
5
Consensus recommendation for a diagnostic guideline for acid sphingomyelinase deficiency.
Genet Med. 2017 Sep;19(9):967-974. doi: 10.1038/gim.2017.7. Epub 2017 Apr 13.
6
MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content.
Redox Biol. 2017 Aug;12:274-284. doi: 10.1016/j.redox.2017.02.024. Epub 2017 Mar 2.
7
Types A and B Niemann-Pick disease.
Mol Genet Metab. 2017 Jan-Feb;120(1-2):27-33. doi: 10.1016/j.ymgme.2016.12.008. Epub 2016 Dec 16.
8
Mitochondrial Dysfunction and Neurodegeneration in Lysosomal Storage Disorders.
Trends Mol Med. 2017 Feb;23(2):116-134. doi: 10.1016/j.molmed.2016.12.003. Epub 2017 Jan 19.
10
Niemann-Pick disease, type C and Roscoe Brady.
Mol Genet Metab. 2017 Jan-Feb;120(1-2):34-37. doi: 10.1016/j.ymgme.2016.11.008. Epub 2016 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验