Department of Chemistry, University of Mazandaran, Babolsar, Iran.
J Sep Sci. 2009 Dec;32(23-24):4133-42. doi: 10.1002/jssc.200900373.
In this study, quantitative structure-retention relationship (QSRR) was used for the prediction of Kováts retention indices of 180 alkylphenols and their derivatives using the multiple linear regression (MLR) and support vector machine (SVM). After the calculation of some molecular descriptors for all molecules, the data set was randomly divided into training and test sets. The diversity of training and test sets was examined by molecular diversity validation test. Then stepwise MLR was used for the selection of the most important descriptors and development of MLR models. Descriptors which appeared in these QSRR models are number of H atoms, relative number of O atoms, Balaban index, relation yz-shadow/yz-rectangle and partial charges hydrogen bond donor atoms HDCA(2) index. These descriptors were used as inputs for developing the SVM model. After optimizing the SVM parameters, it was used for the calculation of chromatographic retention of interest molecules. The values of SE in calculation of Kováts retention indices for training and test sets are 0.34 and 0.63, respectively, for MLR model and 0.35 and 0.63, respectively, for SVM model. The overall values of average absolute relative error were 13.24 and 13.83 for MLR and SVM models, respectively. In addition, the cross-validation tests were performed to further examine the obtained model. The calculated values of cross-validation correlation coefficient (Q(2)) and standard deviation based on predicted residual sum of square are 0.896 and 0.680 for MLR model and 0.893 and 0.67 for SVM model. These values and other obtained statistical parameters for these models reveal the suitability of QSRR in prediction of Kováts retention indices of alkylphenols using MLR and SVM techniques.
在这项研究中,使用多元线性回归(MLR)和支持向量机(SVM),通过定量结构-保留关系(QSRR)对 180 种烷基酚及其衍生物的科瓦茨保留指数进行预测。对所有分子计算了一些分子描述符后,将数据集随机分为训练集和测试集。通过分子多样性验证测试检查了训练集和测试集的多样性。然后,逐步 MLR 用于选择最重要的描述符并开发 MLR 模型。出现在这些 QSRR 模型中的描述符是 H 原子数、O 原子相对数、Balaban 指数、yz-shadow/yz-rectangle 关系和部分电荷氢键供体原子 HDCA(2)指数。这些描述符用作开发 SVM 模型的输入。在优化 SVM 参数后,用于计算感兴趣分子的色谱保留。MLR 模型计算训练集和测试集科瓦茨保留指数的 SE 值分别为 0.34 和 0.63,SVM 模型分别为 0.35 和 0.63。MLR 和 SVM 模型的平均绝对相对误差的总体值分别为 13.24 和 13.83。此外,还进行了交叉验证测试,以进一步检查所获得的模型。基于预测残差平方和的交叉验证相关系数(Q(2))和标准偏差的计算值分别为 MLR 模型 0.896 和 0.680,SVM 模型 0.893 和 0.67。这些值和这些模型的其他获得的统计参数表明,使用 MLR 和 SVM 技术,QSRR 适用于预测烷基酚的科瓦茨保留指数。