Suppr超能文献

利用 SVD 技术进行分辨率恢复以改善闪烁成像中的病灶检测。

Improvement of Lesion Detection in Scintigraphic Images by SVD Techniques for Resolution Recovery.

出版信息

IEEE Trans Med Imaging. 1986;5(1):35-44. doi: 10.1109/TMI.1986.4307737.

Abstract

The properties of singular value decomposition (SVD) are used to implement an SVD spatial domain pseudoinverse restoration filter. This type of filter is attractive for poor imaging conditions (low spatial resolution, high image noise) and is thus appealing for nuclear medicine images. The method might offer some advantages over more traditional frequency domain filter techniques since the restoration is performed on a local rather than global basis. High-contrast thyroid phantom images collected at different count densities and low-contrast liver phantom images were processed with the SVD filter. Restored images yielded improved spatial resolution, lesion contrast, and signal-to-noise ratio. The SVD pseudoinverse restoration filter implemented as an interactive process permits the operator to terminate filtering at a stage where the visually "best" image is obtained compared to the original data. Processed images suggest that the technique may have potential for improving lesion detection in nuclear medicine.

摘要

奇异值分解(SVD)的性质被用来实现 SVD 空域伪逆恢复滤波器。这种类型的滤波器对于成像条件较差(空间分辨率低、图像噪声高)的情况很有吸引力,因此对于核医学图像很有吸引力。与更传统的频域滤波技术相比,该方法可能具有一些优势,因为恢复是在局部而不是全局基础上进行的。使用 SVD 滤波器处理了在不同计数密度下采集的高对比度甲状腺体模图像和低对比度肝脏体模图像。恢复后的图像提高了空间分辨率、病变对比度和信噪比。作为一个交互式处理过程实现的 SVD 伪逆恢复滤波器允许操作员在与原始数据相比获得视觉上“最佳”图像的阶段终止滤波。处理后的图像表明,该技术可能有潜力提高核医学中的病变检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验