Savolainen S E, Liewendahl B K
Department of Physics, University of Helsinki, Finland.
Ann Nucl Med. 1994 May;8(2):101-8. doi: 10.1007/BF03165014.
The singular value decomposition (SVD) method is presented as a potential tool for analyzing gamma camera images. Mathematically image analysis is a study of matrixes as the standard scintigram is a digitized matrix presentation of the recorded photon fluence from radioactivity of the object. Each matrix element (pixel) consists of a number, which equals the detected counts of the object position. The analysis of images can be reduced to the analysis of the singular values of the matrix decomposition. In the present study the clinical usefulness of SVD was tested by analyzing two different kinds of scintigrams: brain images by single photon emission tomography (SPET), and liver and spleen planar images. It is concluded that SVD can be applied to the analysis of gamma camera images, and that it provides an objective method for interpretation of clinically relevant information contained in the images. In image filtering, SVD provides results comparable to conventional filtering. In addition, the study of singular values can be used for semiquantitation of radionuclide images as exemplified by brain SPET studies and liver-spleen planar studies.
奇异值分解(SVD)方法被作为一种分析γ相机图像的潜在工具提出。从数学角度来看,图像分析是对矩阵的研究,因为标准闪烁图是来自物体放射性所记录光子注量的数字化矩阵表示。每个矩阵元素(像素)由一个数字组成,该数字等于物体位置的检测计数。图像分析可简化为对矩阵分解奇异值的分析。在本研究中,通过分析两种不同类型的闪烁图来测试SVD的临床实用性:单光子发射断层扫描(SPET)的脑图像以及肝脏和脾脏平面图像。得出的结论是,SVD可应用于γ相机图像分析,并且它为解释图像中包含的临床相关信息提供了一种客观方法。在图像滤波方面,SVD提供的结果与传统滤波相当。此外,奇异值研究可用于放射性核素图像的半定量分析,如脑SPET研究和肝脏 - 脾脏平面研究所示。