Yang Fan, Paindavoine M
Univ. de Bourgogne, Dijon, France.
IEEE Trans Neural Netw. 2003;14(5):1162-75. doi: 10.1109/TNN.2003.816035.
This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.
本文描述了一种实时视觉系统,该系统使我们能够在视频序列中定位面部并验证其身份。这些过程是基于径向基函数(RBF)神经网络方法的图像处理技术。该系统的鲁棒性已在八个视频序列上进行了定量评估。我们已将我们的模型应用于使用英国剑桥奥利维蒂研究实验室(ORL)数据库进行人脸识别,以便与其他系统的性能进行比较。我们还分别描述了我们的模型在基于现场可编程门阵列(FPGA)、零指令集计算机(ZISC)芯片和数字信号处理器(DSP)TMS320C62的嵌入式系统上的三种硬件实现。我们分析了算法复杂度,并根据所使用的资源和处理速度给出了硬件实现的结果。面部跟踪和身份验证的成功率分别为92%(FPGA)、85%(ZISC)和98.2%(DSP)。对于这三种嵌入式系统,图像尺寸为288×352时的处理速度分别为14帧/秒、25帧/秒和4.8帧/秒。