Suppr超能文献

增强嵌入式对象跟踪:一种实现实时可预测性的硬件加速方法。

Enhancing Embedded Object Tracking: A Hardware Acceleration Approach for Real-Time Predictability.

作者信息

Zhang Mingyang, Van Beeck Kristof, Goedemé Toon

机构信息

PSI-EAVISE Research Group, Department of Electrical Engineering, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium.

出版信息

J Imaging. 2024 Mar 13;10(3):70. doi: 10.3390/jimaging10030070.

Abstract

While Siamese object tracking has witnessed significant advancements, its hard real-time behaviour on embedded devices remains inadequately addressed. In many application cases, an embedded implementation should not only have a minimal execution latency, but this latency should ideally also have zero variance, i.e., be predictable. This study aims to address this issue by meticulously analysing real-time predictability across different components of a deep-learning-based video object tracking system. Our detailed experiments not only indicate the superiority of Field-Programmable Gate Array (FPGA) implementations in terms of hard real-time behaviour but also unveil important time predictability bottlenecks. We introduce dedicated hardware accelerators for key processes, focusing on depth-wise cross-correlation and padding operations, utilizing high-level synthesis (HLS). Implemented on a KV260 board, our enhanced tracker exhibits not only a speed up, with a factor of 6.6, in mean execution time but also significant improvements in hard real-time predictability by yielding 11 times less latency variation as compared to our baseline. A subsequent analysis of power consumption reveals our approach's contribution to enhanced power efficiency. These advancements underscore the crucial role of hardware acceleration in realizing time-predictable object tracking on embedded systems, setting new standards for future hardware-software co-design endeavours in this domain.

摘要

虽然暹罗目标跟踪已经取得了显著进展,但其在嵌入式设备上的硬实时性能仍未得到充分解决。在许多应用场景中,嵌入式实现不仅应具有最小的执行延迟,而且理想情况下,这种延迟还应具有零方差,即具有可预测性。本研究旨在通过细致分析基于深度学习的视频目标跟踪系统不同组件的实时可预测性来解决这一问题。我们的详细实验不仅表明现场可编程门阵列(FPGA)实现在硬实时性能方面的优越性,还揭示了重要的时间可预测性瓶颈。我们为关键流程引入了专用硬件加速器,重点关注深度互相关和填充操作,采用高级综合(HLS)。在KV260板上实现后,我们增强后的跟踪器不仅平均执行时间加快了6.6倍,而且与基线相比,硬实时可预测性有了显著提高,延迟变化减少了11倍。随后的功耗分析揭示了我们的方法对提高功率效率的贡献。这些进展凸显了硬件加速在嵌入式系统上实现时间可预测目标跟踪方面的关键作用,为该领域未来的硬件-软件协同设计努力设定了新的标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a5/10970761/96b1c435b8a7/jimaging-10-00070-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验