Suppr超能文献

用于“大图像”处理的复杂度降低

Complexity reduction for "large image" processing.

作者信息

Pal N R, Bezdek J C

机构信息

Electron. & Commun. Sci. Unit, Indian Stat. Inst., Calcutta, India.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2002;32(5):598-611. doi: 10.1109/TSMCB.2002.1033179.

Abstract

We present a method for sampling feature vectors in large (e.g., 2000 /spl times/ 5000 /spl times/ 16 bit) images that finds subsets of pixel locations which represent c "regions" in the image. Samples are accepted by the chi-square (/spl chi//sup 2/) or divergence hypothesis test. A framework that captures the idea of efficient extension of image processing algorithms from the samples to the rest of the population is given. Computationally expensive (in time and/or space) image operators (e.g., neural networks (NNs) or clustering models) are trained on the sample, and then extended noniteratively to the rest of the population. We illustrate the general method using fuzzy c-means (FCM) clustering to segment Indian satellite images. On average, the new method can achieve about 99% accuracy (relative to running the literal algorithm) using roughly 24% of the image for training. This amounts to an average savings of 76% in CPU time. We also compare our method to its closest relative in the group of schemes used to accelerate FCM: our method averages a speedup of about 4.2, whereas the multistage random sampling approach achieves an average acceleration of 1.63.

摘要

我们提出了一种在大型(例如,2000×5000×16位)图像中采样特征向量的方法,该方法可找到表示图像中c个“区域”的像素位置子集。样本通过卡方(χ²)或散度假设检验来接受。给出了一个框架,该框架体现了将图像处理算法从样本高效扩展到总体其余部分的思想。计算成本高昂(在时间和/或空间上)的图像算子(例如,神经网络(NN)或聚类模型)在样本上进行训练,然后非迭代地扩展到总体其余部分。我们使用模糊c均值(FCM)聚类对印度卫星图像进行分割来说明该通用方法。平均而言,新方法使用大约24%的图像进行训练,相对于运行原始算法可达到约99%的准确率。这相当于平均节省76%的CPU时间。我们还将我们的方法与用于加速FCM的一组方案中最接近的相关方法进行了比较:我们的方法平均加速约4.2,而多级随机采样方法平均加速1.63。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验