Marimin M, Umano M, Hatono I, Tamura H
Dept. of Agro-Ind. Technol., Bogor Agric. Univ., Indonesia.
IEEE Trans Syst Man Cybern B Cybern. 2002;32(5):691-700. doi: 10.1109/TSMCB.2002.1033190.
Gradual improvements to a single-level semi-numeric method, i.e., linguistic labels preference representation by fuzzy sets computation for pairwise fuzzy group decision making are summarized. The method is extended to solve multiple criteria hierarchical structure pairwise fuzzy group decision-making problems. The problems are hierarchically structured into focus, criteria, and alternatives. Decision makers express their evaluations of criteria and alternatives based on each criterion by using linguistic labels. The labels are converted into and processed in triangular fuzzy numbers (TFNs). Evaluations of criteria yield relative criteria weights. Evaluations of the alternatives, based on each criterion, yield a degree of preference for each alternative or a degree of satisfaction for each preference value. By using a neat ordered weighted average (OWA) or a fuzzy weighted average operator, solutions obtained based on each criterion are aggregated into final solutions. The hierarchical semi-numeric method is suitable for solving a larger and more complex pairwise fuzzy group decision-making problem. The proposed method has been verified and applied to solve some real cases and is compared to Saaty's (1996) analytic hierarchy process (AHP) method.
总结了对单级半数值方法的逐步改进,即用于成对模糊群体决策的通过模糊集计算进行语言标签偏好表示。该方法被扩展以解决多准则层次结构成对模糊群体决策问题。这些问题被层次结构化为焦点、准则和备选方案。决策者通过使用语言标签来表达他们基于每个准则对准则和备选方案的评估。这些标签被转换为三角模糊数(TFN)并在其中进行处理。对准则的评估产生相对准则权重。基于每个准则对备选方案的评估产生每个备选方案的偏好程度或每个偏好值的满意度。通过使用简洁有序加权平均(OWA)或模糊加权平均算子,基于每个准则获得的解被汇总为最终解。层次半数值方法适用于解决更大、更复杂的成对模糊群体决策问题。所提出的方法已经过验证并应用于解决一些实际案例,并与萨蒂(1996)的层次分析法(AHP)方法进行了比较。