Michael Todd P, Mockler Todd C, Breton Ghislain, McEntee Connor, Byer Amanda, Trout Jonathan D, Hazen Samuel P, Shen Rongkun, Priest Henry D, Sullivan Christopher M, Givan Scott A, Yanovsky Marcelo, Hong Fangxin, Kay Steve A, Chory Joanne
Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America.
PLoS Genet. 2008 Feb;4(2):e14. doi: 10.1371/journal.pgen.0040014.
Correct daily phasing of transcription confers an adaptive advantage to almost all organisms, including higher plants. In this study, we describe a hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data. To demonstrate its utility, we analyzed a comprehensive matrix of time courses interrogating the nuclear transcriptome of Arabidopsis thaliana plants grown under different thermocycles, photocycles, and circadian conditions. We show that 89% of Arabidopsis transcripts cycle in at least one condition and that most genes have peak expression at a particular time of day, which shifts depending on the environment. Thermocycles alone can drive at least half of all transcripts critical for synchronizing internal processes such as cell cycle and protein synthesis. We identified at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX. We validated the network discovery pipeline, as well as the midnight specific module, by demonstrating that the PBX element was sufficient to drive diurnal and circadian condition-dependent expression. Moreover, we show that the three transcription modules are conserved across Arabidopsis, poplar, and rice. These results confirm the complex interplay between thermocycles, photocycles, and the circadian clock on the daily transcription program, and provide a comprehensive view of the conserved genomic targets for a transcriptional network key to successful adaptation.
转录的正确每日相位调整赋予包括高等植物在内的几乎所有生物体一种适应性优势。在本研究中,我们描述了一种基于假设驱动的网络发现流程,该流程可在基因组规模数据中识别生物学相关模式。为证明其效用,我们分析了一个全面的时间进程矩阵,该矩阵对在不同热循环、光周期和昼夜节律条件下生长的拟南芥植物的核转录组进行了研究。我们发现,89%的拟南芥转录本在至少一种条件下呈现周期性变化,并且大多数基因在一天中的特定时间达到表达峰值,该峰值会根据环境而变化。仅热循环就能驱动至少一半对同步内部过程(如细胞周期和蛋白质合成)至关重要的转录本。我们确定了至少三个控制阶段特异性表达的不同转录模块,包括一个新的午夜特异性模块PBX/TBX/SBX。我们通过证明PBX元件足以驱动昼夜和昼夜节律条件依赖性表达,验证了网络发现流程以及午夜特异性模块。此外,我们表明这三个转录模块在拟南芥、杨树和水稻中是保守的。这些结果证实了热循环、光周期和昼夜节律时钟在每日转录程序上的复杂相互作用,并为成功适应的转录网络的保守基因组靶点提供了全面视图。