Suppr超能文献

使用傅里叶变换近红外技术对玉米秸秆组分进行快速分类和成分分析。

Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques.

作者信息

Philip Ye X, Liu Lu, Hayes Douglas, Womac Alvin, Hong Kunlun, Sokhansanj Shahab

机构信息

Department of Biosystems Engineering and Soil Science, The University of Tennessee, 2506 E. J. Chapman Dr., Knoxville, TN 37996, USA.

出版信息

Bioresour Technol. 2008 Oct;99(15):7323-32. doi: 10.1016/j.biortech.2007.12.063. Epub 2008 Feb 4.

Abstract

The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.

摘要

本研究的目的是确定玉米秸秆各植物组分间化学成分的差异,并通过建立基于傅里叶变换近红外(FT-NIR)光谱预测玉米秸秆化学成分的校准模型,探究FT-NIR技术在对分离出的玉米秸秆组分进行定性分类以及定量分析玉米秸秆化学成分方面的潜力。通过将玉米秸秆样品手动分离为六个植物组分,实现了可靠校准模型所需的宽校准范围内玉米秸秆化学成分的大幅变化,并用传统湿化学分析法测定了它们的化学成分,这证明了玉米秸秆不同植物组分间的化学成分差异显著。总糖含量由高到低的不同植物组分依次为苞叶、叶鞘、髓、外皮、叶片和节。基于在生物质上采集的FT-NIR光谱,采用类软独立建模法(SIMCA)对玉米秸秆组分进行定性分类,并用偏最小二乘法(PLS)回归进行化学成分定量分析。SIMCA成功地对玉米秸秆的植物组分进行了分类。所建立的PLS模型对葡聚糖、木聚糖, 半乳聚糖、阿拉伯聚糖、甘露聚糖、木质素和灰分的预测均方根误差(RMSEP %w/w)分别为0.92、1.03、0.17、0.27、0.21、1.12和0.57。结果表明,FT-NIR技术结合多变量分析具有潜力,可供生物质原料供应商、生物乙醇制造商和生物能源生产商利用,以更好地管理生物能源原料并提高生物转化效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验