Parekh R, Yang J, Honavar V
Allstate Research and Planning Center, Menlo Park, CA 94025, USA.
IEEE Trans Neural Netw. 2000;11(2):436-51. doi: 10.1109/72.839013.
Constructive learning algorithms offer an attractive approach for the incremental construction of near-minimal neural-network architectures for pattern classification. They help overcome the need for ad hoc and often inappropriate choices of network topology in algorithms that search for suitable weights in a priori fixed network architectures. Several such algorithms are proposed in the literature and shown to converge to zero classification errors (under certain assumptions) on tasks that involve learning a binary to binary mapping (i.e., classification problems involving binary-valued input attributes and two output categories). We present two constructive learning algorithms MPyramid-real and MTiling-real that extend the pyramid and tiling algorithms, respectively, for learning real to M-ary mappings (i.e., classification problems involving real-valued input attributes and multiple output classes). We prove the convergence of these algorithms and empirically demonstrate their applicability to practical pattern classification problems. Additionally, we show how the incorporation of a local pruning step can eliminate several redundant neurons from MTiling-real networks.
建设性学习算法为模式分类的近最小神经网络架构的增量构建提供了一种有吸引力的方法。它们有助于克服在预先固定的网络架构中搜索合适权重的算法中对网络拓扑进行临时且往往不适当选择的需求。文献中提出了几种这样的算法,并表明在涉及学习二进制到二进制映射的任务(即涉及二进制值输入属性和两个输出类别的分类问题)上(在某些假设下)收敛到零分类误差。我们提出了两种建设性学习算法MPyramid-real和MTiling-real,它们分别扩展了金字塔算法和平铺算法,用于学习实数到M元映射(即涉及实值输入属性和多个输出类别的分类问题)。我们证明了这些算法的收敛性,并通过实验证明了它们在实际模式分类问题中的适用性。此外,我们展示了如何通过合并局部修剪步骤从MTiling-real网络中消除几个冗余神经元。