Suppr超能文献

SEHIDS:面向物联网网络的自进化主机入侵检测系统。

SEHIDS: Self Evolving Host-Based Intrusion Detection System for IoT Networks.

机构信息

Department of Computer Engineering, College of Computer and Information Technology, Taif University, Taif 21994, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Aug 29;22(17):6505. doi: 10.3390/s22176505.

Abstract

The Internet of Things (IoT) offers unprecedented opportunities to access anything from anywhere and at any time. It is, therefore, not surprising that the IoT acts as a paramount infrastructure for most modern and envisaged systems, including but not limited to smart homes, e-health, and intelligent transportation systems. However, the prevalence of IoT networks and the important role they play in various critical aspects of our lives make them a target for various types of advanced cyberattacks: Dyn attack, BrickerBot, Sonic, Smart Deadbolts, and Silex are just a few examples. Motivated by the need to protect IoT networks, this paper proposes SEHIDS: Self Evolving Host-based Intrusion Detection System. The underlying approach of SEHIDS is to equip each IoT node with a simple Artificial Neural Networks (ANN) architecture and a lightweight mechanism through which an IoT device can train this architecture online and evolves it whenever its performance prediction is degraded. By this means, SEHIDS enables each node to generate the ANN architecture required to detect the threats it faces, which makes SEHIDS suitable for the heterogeneity and turbulence of traffic amongst nodes. Moreover, the gradual evolution of the SEHIDS architecture facilitates retaining it to its near-minimal configurations, which saves the resources required to compute, store, and manipulate the model's parameters and speeds up the convergence of the model to the zero-classification regions. It is noteworthy that SEHIDS specifies the evolving criteria based on the outcomes of the built-in model's loss function, which is, in turn, facilitates using SEHIDS to develop the two common types of IDS: signature-based and anomaly-based. Where in the signature-based IDS version, a supervised architecture (i.e., multilayer perceptron architecture) is used to classify different types of attacks, while in the anomaly-based IDS version, an unsupervised architecture (i.e., replicator neuronal network) is used to distinguish benign from malicious traffic. Comprehensive assessments for SEHIDS from different perspectives were conducted with three recent datasets containing a variety of cyberattacks targeting IoT networks: BoT-IoT, TON-IOT, and IoTID20. These results of assessments demonstrate that SEHIDS is able to make accurate predictions of 1 True Positive and is suitable for IoT networks with the order of small fractions of the resources of typical IoT devices.

摘要

物联网 (IoT) 提供了前所未有的机会,可以随时随地访问任何事物。因此,物联网作为大多数现代和预期系统的主要基础设施也就不足为奇了,包括但不限于智能家居、电子健康和智能交通系统。然而,物联网网络的普及以及它们在我们生活的各个关键方面所扮演的重要角色,使它们成为各种类型的高级网络攻击的目标:Dyn 攻击、BrickerBot、Sonic、Smart Deadbolts 和 Silex 只是其中的几个例子。为了保护物联网网络,本文提出了 SEHIDS:自进化基于主机的入侵检测系统。SEHIDS 的基本方法是为每个物联网节点配备一个简单的人工神经网络 (ANN) 架构和一个轻量级机制,通过该机制,物联网设备可以在线训练该架构,并在其性能预测下降时对其进行进化。通过这种方式,SEHIDS 使每个节点都能够生成检测其面临的威胁所需的 ANN 架构,这使得 SEHIDS 适用于节点之间的异构性和流量的不稳定性。此外,SEHIDS 架构的逐步进化有助于将其保留到接近最小的配置,从而节省计算、存储和操作模型参数所需的资源,并加快模型收敛到零分类区域。值得注意的是,SEHIDS 根据内置模型损失函数的结果指定进化标准,这反过来又有助于使用 SEHIDS 开发两种常见类型的 IDS:基于签名的和基于异常的。在基于签名的 IDS 版本中,使用监督架构(即多层感知器架构)对不同类型的攻击进行分类,而在基于异常的 IDS 版本中,使用无监督架构(即复制神经元网络)对良性和恶意流量进行区分。使用三个包含针对物联网网络的各种网络攻击的最新数据集从不同角度对 SEHIDS 进行了全面评估:BoT-IoT、TON-IOT 和 IoTID20。这些评估结果表明,SEHIDS 能够准确预测 1 个真阳性,并且适用于资源数量仅为典型物联网设备的一小部分的物联网网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/294e/9460002/7a86d31f9031/sensors-22-06505-g001.jpg

相似文献

1
SEHIDS: Self Evolving Host-Based Intrusion Detection System for IoT Networks.
Sensors (Basel). 2022 Aug 29;22(17):6505. doi: 10.3390/s22176505.
2
IoT Intrusion Detection Taxonomy, Reference Architecture, and Analyses.
Sensors (Basel). 2021 Sep 26;21(19):6432. doi: 10.3390/s21196432.
3
Using Embedded Feature Selection and CNN for Classification on CCD-INID-V1-A New IoT Dataset.
Sensors (Basel). 2021 Jul 15;21(14):4834. doi: 10.3390/s21144834.
4
Transfer-Learning-Based Intrusion Detection Framework in IoT Networks.
Sensors (Basel). 2022 Jul 27;22(15):5621. doi: 10.3390/s22155621.
6
A hybrid deep learning-based intrusion detection system for IoT networks.
Math Biosci Eng. 2023 Jun 13;20(8):13491-13520. doi: 10.3934/mbe.2023602.
7
Enhanced Anomaly Detection System for IoT Based on Improved Dynamic SBPSO.
Sensors (Basel). 2022 Jun 29;22(13):4926. doi: 10.3390/s22134926.
9
An Improved LDA-Based ELM Classification for Intrusion Detection Algorithm in IoT Application.
Sensors (Basel). 2020 Mar 19;20(6):1706. doi: 10.3390/s20061706.

本文引用的文献

1
Realguard: A Lightweight Network Intrusion Detection System for IoT Gateways.
Sensors (Basel). 2022 Jan 7;22(2):432. doi: 10.3390/s22020432.
2
Analysis of Autoencoders for Network Intrusion Detection.
Sensors (Basel). 2021 Jun 23;21(13):4294. doi: 10.3390/s21134294.
3
Modeling the Energy Performance of LoRaWAN.
Sensors (Basel). 2017 Oct 16;17(10):2364. doi: 10.3390/s17102364.
4
Constructive neural-network learning algorithms for pattern classification.
IEEE Trans Neural Netw. 2000;11(2):436-51. doi: 10.1109/72.839013.
5
The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data.
IEEE Trans Neural Netw. 2002;13(6):1331-41. doi: 10.1109/TNN.2002.804221.
6
Back-propagation is not Efficient.
Neural Netw. 1996 Aug;9(6):1017-1023. doi: 10.1016/0893-6080(95)00135-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验