Suppr超能文献

应用于气泡-碎片分类的卷积神经网络上的形态学与自波度量

Morphology and autowave metric on CNN applied to bubble-debris classification.

作者信息

Szatmári I, Schultz A, Rekeczky C, Kozek T, Roska T, Chua L O

机构信息

Nonlinear Electronics Laboratory of the Electronics Research Laboratory, College of Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.

出版信息

IEEE Trans Neural Netw. 2000;11(6):1385-93. doi: 10.1109/72.883456.

Abstract

In this study, we present the initial results of cellular neural network (CNN)-based autowave metric to high-speed pattern recognition of gray-scale images. the application is to a problem involving separation of metallic wear debris particles from air bubbles. This problem arises in an optical-based system for determination of mechanical wear. This paper focuses on distinguishing debris particles suspended in the oil flow from air bubbles and aims to employ CNN technology to create an online fault monitoring system. For the class of engines of interest bubbles occur much more often than debris particles and the goal is to develop a classification system with an extremely low false alarm rate for misclassified bubbles. The designed analogic CNN algorithm detects and classifies single bubbles es and bubble groups using binary morphology and autowave metric. The debris particles are separated based on autowave distances computed between bubble models and the unknown objects. Initial experiments indicate that the proposed algorithm is robust and noise tolerant and when implemented on a CNN universal chip it provides a solution in real time.

摘要

在本研究中,我们展示了基于细胞神经网络(CNN)的自波度量用于灰度图像高速模式识别的初步结果。该应用针对一个涉及从气泡中分离金属磨损碎屑颗粒的问题。这个问题出现在基于光学的机械磨损测定系统中。本文重点在于区分油流中悬浮的碎屑颗粒和气泡,并旨在采用CNN技术创建一个在线故障监测系统。对于感兴趣的发动机类别,气泡出现的频率比碎屑颗粒高得多,目标是开发一个误报率极低的气泡误分类分类系统。所设计 的模拟CNN算法使用二值形态学和自波度量来检测和分类单个气泡以及气泡群。碎屑颗粒是根据气泡模型与未知物体之间计算出的自波距离来分离的。初步实验表明,所提出的算法具有鲁棒性且耐噪声,并且在CNN通用芯片上实现时能实时提供解决方案。

相似文献

1
Morphology and autowave metric on CNN applied to bubble-debris classification.
IEEE Trans Neural Netw. 2000;11(6):1385-93. doi: 10.1109/72.883456.
2
CNN universal machine as classificaton platform: an art-like clustering algorithm.
Int J Neural Syst. 2003 Dec;13(6):415-25. doi: 10.1142/S0129065703001807.
3
Bio-Microfluidics Real-Time Monitoring Using CNN Technology.
IEEE Trans Biomed Circuits Syst. 2008 Jun;2(2):78-87. doi: 10.1109/TBCAS.2008.925642.
4
Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach.
IEEE Trans Med Imaging. 2014 May;33(5):1129-36. doi: 10.1109/TMI.2014.2305394.
6
Bubble velocimetry using the conventional and CNN-based optical flow algorithms.
Sci Rep. 2022 Jul 13;12(1):11879. doi: 10.1038/s41598-022-16145-y.
8
Tunable magnetophoretic method for distinguishing and separating wear debris particles in an Fe-PDMS-based microfluidic chip.
Electrophoresis. 2023 Aug;44(15-16):1210-1219. doi: 10.1002/elps.202300026. Epub 2023 May 2.
9
A bubble detection system for propellant filling pipeline.
Rev Sci Instrum. 2014 Jun;85(6):065106. doi: 10.1063/1.4881538.
10
A Wear Debris Segmentation Method for Direct Reflection Online Visual Ferrography.
Sensors (Basel). 2019 Feb 11;19(3):723. doi: 10.3390/s19030723.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验