Suppr超能文献

未来的二氧化碳浓度,而非更高的温度,增强了小麦光合作用的温度响应。

Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses.

作者信息

Alonso Aitor, Pérez Pilar, Morcuende Rosa, Martinez-Carrasco Rafael

机构信息

Institute for Natural Resources and Agricultural Biology of Salamanca, CSIC, Apartado 257, E-37071 Salamanca, Spain.

出版信息

Physiol Plant. 2008 Jan;132(1):102-12. doi: 10.1111/j.1399-3054.2007.00997.x.

Abstract

The temperature dependence of C3 photosynthesis is known to vary according to the growth environment. Atmospheric CO2 concentration and temperature are predicted to increase with climate change. To test whether long-term growth in elevated CO2 and temperature modifies photosynthesis temperature response, wheat (Triticum aestivum L.) was grown in ambient CO2 (370 micromol mol(-1)) and elevated CO2 (700 micromol mol(-1)) combined with ambient temperatures and 4 degrees C warmer ones, using temperature gradient chambers in the field. Flag leaf photosynthesis was measured at temperatures ranging from 20 to 35 degrees C and varying CO2 concentrations between ear emergence and anthesis. The maximum rate of carboxylation was determined in vitro in the first year of the experiment and from the photosynthesis-intercellular CO2 response in the second year. With measurement CO2 concentrations of 330 micromol mol(-1) or lower, growth temperature had no effect on flag leaf photosynthesis in plants grown in ambient CO2, while it increased photosynthesis in elevated growth CO2. However, warmer growth temperatures did not modify the response of photosynthesis to measurement temperatures from 20 to 35 degrees C. A central finding of this study was that the increase with temperature in photosynthesis and the photosynthesis temperature optimum were significantly higher in plants grown in elevated rather than ambient CO2. In association with this, growth in elevated CO2 increased the temperature response (activation energy) of the maximum rate of carboxylation. The results provide field evidence that growth under CO2 enrichment enhances the response of Rubisco activity to temperature in wheat.

摘要

已知C3光合作用的温度依赖性会因生长环境而异。预计随着气候变化,大气中的二氧化碳浓度和温度将会升高。为了测试在高浓度二氧化碳和高温环境下长期生长是否会改变光合作用的温度响应,利用田间温度梯度箱,将小麦(Triticum aestivum L.)种植在环境二氧化碳浓度(370 μmol mol⁻¹)和高浓度二氧化碳(700 μmol mol⁻¹)条件下,并分别结合环境温度和比环境温度高4摄氏度的温度条件。在抽穗期至开花期,于20至35摄氏度的温度范围内以及不同二氧化碳浓度条件下测定旗叶的光合作用。在实验的第一年通过体外测定确定羧化最大速率,在第二年则根据光合作用-细胞间二氧化碳响应来确定。当测量的二氧化碳浓度为330 μmol mol⁻¹或更低时,生长温度对生长在环境二氧化碳浓度下的植株的旗叶光合作用没有影响,而对生长在高浓度二氧化碳环境下的植株,生长温度会提高其光合作用。然而,较高的生长温度并未改变光合作用对20至35摄氏度测量温度的响应。该研究的一个主要发现是,与生长在环境二氧化碳浓度下的植株相比,生长在高浓度二氧化碳环境下的植株,其光合作用随温度的增加以及光合作用的最适温度显著更高。与此相关的是,在高浓度二氧化碳环境下生长会增加羧化最大速率的温度响应(活化能)。这些结果提供了田间证据,表明在二氧化碳浓度升高的环境下生长可增强小麦中核酮糖-1,5-二磷酸羧化酶活性对温度的响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验