Suppr超能文献

基于Sigmoid神经网络的条件概率密度函数估计

Conditional probability density function estimation with sigmoidal neural networks.

作者信息

Sarajedini A, Hecht-Nielsen R, Chau P M

机构信息

Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, USA.

出版信息

IEEE Trans Neural Netw. 1999;10(2):231-8. doi: 10.1109/72.750544.

Abstract

Real-world problems can often be couched in terms of conditional probability density function estimation. In particular, pattern recognition, signal detection, and financial prediction are among the multitude of applications requiring conditional density estimation. Previous developments in this direction have used neural nets to estimate statistics of the distribution or the marginal or joint distributions of the input-output variables. We have modified the joint distribution estimating sigmoidal neural network to estimate the conditional distribution. Thus, the probability density of the output conditioned on the inputs is estimated using a neural network. We have derived and implemented the learning laws to train the network. We show that this network has computational advantages over a brute force ratio of joint and marginal distributions. We also compare its performance to a kernel conditional density estimator in a larger scale (higher dimensional) problem simulating more realistic conditions.

摘要

现实世界中的问题通常可以用条件概率密度函数估计来表述。特别是,模式识别、信号检测和金融预测都属于需要条件密度估计的众多应用领域。此前在这个方向上的进展已经使用神经网络来估计输入输出变量的分布统计量或边际分布或联合分布。我们对联合分布估计的 sigmoidal 神经网络进行了修改,以估计条件分布。因此,使用神经网络估计基于输入的输出的概率密度。我们推导并实现了训练网络的学习法则。我们表明,该网络在联合分布与边际分布的蛮力比值方面具有计算优势。我们还在模拟更现实条件的更大规模(更高维度)问题中,将其性能与核条件密度估计器进行了比较。

相似文献

2
A hybrid pareto mixture for conditional asymmetric fat-tailed distributions.用于条件不对称厚尾分布的混合帕累托混合模型。
IEEE Trans Neural Netw. 2009 Jul;20(7):1087-101. doi: 10.1109/TNN.2009.2016339. Epub 2009 May 26.
4
Kernel density estimation-based real-time prediction for respiratory motion.基于核密度估计的呼吸运动实时预测。
Phys Med Biol. 2010 Mar 7;55(5):1311-26. doi: 10.1088/0031-9155/55/5/004. Epub 2010 Feb 4.
5
Neural network for estimating conditional distributions.
IEEE Trans Neural Netw. 1997;8(5):1015-25. doi: 10.1109/72.623203.
7
Median radial basis function neural network.中位数径向基函数神经网络。
IEEE Trans Neural Netw. 1996;7(6):1351-64. doi: 10.1109/72.548164.
10
Nonparametric estimation of Fisher information from real data.从实际数据中进行非参数 Fisher 信息估计。
Phys Rev E. 2016 Feb;93(2):023301. doi: 10.1103/PhysRevE.93.023301. Epub 2016 Feb 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验