Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
Phys Med Biol. 2010 Mar 7;55(5):1311-26. doi: 10.1088/0031-9155/55/5/004. Epub 2010 Feb 4.
Effective delivery of adaptive radiotherapy requires locating the target with high precision in real time. System latency caused by data acquisition, streaming, processing and delivery control necessitates prediction. Prediction is particularly challenging for highly mobile targets such as thoracic and abdominal tumors undergoing respiration-induced motion. The complexity of the respiratory motion makes it difficult to build and justify explicit models. In this study, we honor the intrinsic uncertainties in respiratory motion and propose a statistical treatment of the prediction problem. Instead of asking for a deterministic covariate-response map and a unique estimate value for future target position, we aim to obtain a distribution of the future target position (response variable) conditioned on the observed historical sample values (covariate variable). The key idea is to estimate the joint probability distribution (pdf) of the covariate and response variables using an efficient kernel density estimation method. Then, the problem of identifying the distribution of the future target position reduces to identifying the section in the joint pdf based on the observed covariate. Subsequently, estimators are derived based on this estimated conditional distribution. This probabilistic perspective has some distinctive advantages over existing deterministic schemes: (1) it is compatible with potentially inconsistent training samples, i.e., when close covariate variables correspond to dramatically different response values; (2) it is not restricted by any prior structural assumption on the map between the covariate and the response; (3) the two-stage setup allows much freedom in choosing statistical estimates and provides a full nonparametric description of the uncertainty for the resulting estimate. We evaluated the prediction performance on ten patient RPM traces, using the root mean squared difference between the prediction and the observed value normalized by the standard deviation of the observed data as the error metric. Furthermore, we compared the proposed method with two benchmark methods: most recent sample and an adaptive linear filter. The kernel density estimation-based prediction results demonstrate universally significant improvement over the alternatives and are especially valuable for long lookahead time, when the alternative methods fail to produce useful predictions.
自适应放疗的有效实施需要实时高精度定位靶区。数据采集、传输、处理和输送控制导致的系统延迟需要预测。对于胸部和腹部肿瘤等运动幅度较大的目标,预测尤其具有挑战性,因为这些目标会随呼吸运动而移动。呼吸运动的复杂性使得难以建立和证明明确的模型。在本研究中,我们尊重呼吸运动固有的不确定性,并提出了一种对预测问题的统计处理方法。我们不是要求得到一个用于未来靶区位置的确定性协变量-响应映射和唯一的估计值,而是旨在获得未来靶区位置(响应变量)的条件分布,条件是观察到的历史样本值(协变量变量)。关键思想是使用有效的核密度估计方法来估计协变量和响应变量的联合概率分布(pdf)。然后,识别未来靶区位置分布的问题简化为基于观察到的协变量在联合 pdf 中识别截面。随后,基于此估计的条件分布推导出估计器。这种概率方法与现有的确定性方案相比具有一些独特的优势:(1)它与潜在不一致的训练样本兼容,即当接近的协变量变量对应于明显不同的响应值时;(2)它不受协变量和响应之间的映射的任何先验结构假设的限制;(3)两阶段设置允许在选择统计估计方面有很大的自由度,并为产生的估计提供了不确定性的完整非参数描述。我们使用预测值与观察值之间的均方根差除以观察数据的标准差作为误差度量,在十份患者 RPM 轨迹上评估了预测性能。此外,我们将提出的方法与两种基准方法进行了比较:最新样本和自适应线性滤波器。基于核密度估计的预测结果普遍优于替代方法,尤其是在长时间的前瞻性观察时,替代方法无法产生有用的预测。