Suppr超能文献

Effects of organochlorines, individually and in mixtures, on B-cell proliferation in marine mammals and mice.

作者信息

Mori Chiharu, Morsey Brenda, Levin Milton, Gorton Timothy S, De Guise Sylvain

机构信息

Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut 06269, USA.

出版信息

J Toxicol Environ Health A. 2008;71(4):266-75. doi: 10.1080/15287390701612860.

Abstract

Organochlorines (OC) are lipophilic and stable, and therefore accumulate in tissues of top predators, such as marine mammals. While the immunomodulatory effects of individual OC have been studied in lab animals, their effects in other species (such as marine mammals) and the possible interactions between chemicals in mixtures are not well understood. This study investigated the immunomodulatory effects of four polychlorinated biphenyls (PCB, IUPAC numbers 138, 153, 169, and 180), as well as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), individually and in mixtures, in marine mammals and mice. Mitogen-induced B lymphocyte proliferation was mostly modulated by non-coplanar PCBs, for which general mechanisms underlying toxicity are poorly understood. Simple additive effects of OC in mixtures were found only in mice, while both synergistic and antagonistic interactions between OC were found in marine mammals. The toxic equivalency (TEQ) approach, which is currently used to assess the dioxin-like toxicity of OC mixtures, failed to predict immunotoxicity in mice and marine mammals, likely due to the complexity of interactions between OC and effects via dioxin-independent pathways. The commonly used mouse model failed to predict the immunotoxicity due to OC in the marine mammals tested. In addition, clustering data suggested that phylogeny might not help predict the toxicity of OC. Lymphoproliferative response was modulated in most species tested suggesting the possibility of increased susceptibility to infectious diseases in these animals. These findings may be helpful in more accurately characterizing the immunotoxic potential of OC in different target species and help in more relevant risk assessment.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验