Safe S H
Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466.
Crit Rev Toxicol. 1994;24(2):87-149. doi: 10.3109/10408449409049308.
Commercial polychlorinated biphenyls (PCBs) and environmental extracts contain complex mixtures of congeners that can be unequivocally identified and quantitated. Some PCB mixtures elicit a spectrum of biochemical and toxic responses in humans and laboratory animals and many of these effects resemble those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons, which act through the aryl hydrocarbon (Ah)-receptor signal transduction pathway. Structure-activity relationships developed for PCB congeners and metabolites have demonstrated that several structural classes of compounds exhibit diverse biochemical and toxic responses. Structure-toxicity studies suggest that the coplanar PCBs, namely, 3,3',4,4'-tetrachlorobiphenyl (tetraCB), 3,3',4,4',5-pentaCB, 3,3',4,4',5,5'-hexaCB, and their monoortho analogs are Ah-receptor agonists and contribute significantly to the toxicity of the PCB mixtures. Previous studies with TCDD and structurally related compounds have utilized a toxic equivalency factor (TEF) approach for the hazard and risk assessment of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) congeners in which the TCDD or toxic TEQ = sigma([PCDFi x TEFi]n)+sigma([PCDDi x TEFi]n) equivalent (TEQ) of a mixture is related to the TEFs and concentrations of the individual (i) congeners as indicated in the equation (note: n = the number of congeners). Based on the results of quantitative structure-activity studies, the following TEF values have been estimated by making use of the data available for the coplanar and monoortho coplanar PCBs: 3,3',4,4',5-pentaCB, 0.1; 3,3',4,4',5,5'-hexaCB, 0.05; 3,3',4,4'-tetraCB, 0.01; 2,3,3',4,4'-pentaCB, 0.001; 2,3',4,4',5-pentaCB, 0.0001; 2,3,3',4,4',5-hexaCB, 0.0003; 2,3,3',4,4',5'-hexaCB, 0.0003; 2',3,4,4',5-pentaCB, 0.00005; and 2,3,4,4',5-pentaCB, 0.0002. Application of the TEF approach for the risk assessment of PCBs must be used with considerable caution. Analysis of the results of laboratory animal and wildlife studies suggests that the predictive value of TEQs for PCBs may be both species- and response-dependent because both additive and nonadditive (antagonistic) interactions have been observed with PCB mixtures. In the latter case, the TEF approach would significantly overestimate the toxicity of a PCB mixture. Analysis of the rodent carcinogenicity data for Aroclor 1260 using the TEF approach suggests that this response is primarily Ah-receptor-independent. Thus, risk assessment of PCB mixtures that uses cancer as the endpoint cannot solely utilize a TEF approach and requires more quantitative information on the individual congeners contributing to the tumor-promoter activity of PCB mixtures.
商业多氯联苯(PCBs)和环境提取物包含多种同系物的复杂混合物,这些同系物能够被明确鉴定和定量。某些多氯联苯混合物会在人类和实验动物中引发一系列生化和毒性反应,其中许多效应类似于由2,3,7,8 - 四氯二苯并 - p - 二恶英(TCDD)及相关卤代芳烃所引起的反应,它们通过芳烃(Ah)受体信号转导途径发挥作用。针对多氯联苯同系物和代谢物建立的构效关系表明,几类结构的化合物呈现出多样的生化和毒性反应。结构 - 毒性研究表明,共平面多氯联苯,即3,3',4,4'-四氯联苯(四氯联苯)、3,3',4,4',5 - 五氯联苯、3,3',4,4',5,5'-六氯联苯及其单邻位类似物是Ah受体激动剂,对多氯联苯混合物的毒性有显著贡献。先前对TCDD和结构相关化合物的研究采用了毒性当量因子(TEF)方法来评估多氯二苯并 - p - 二恶英(PCDD)和多氯二苯并呋喃(PCDF)同系物的危害和风险,在该方法中,混合物的TCDD或毒性当量(TEQ)=∑([PCDFi×TEFi]n)+∑([PCDDi×TEFi]n),与公式中所示的各单个(i)同系物的TEF值和浓度相关(注:n =同系物数量)。基于定量构效研究结果,利用共平面和单邻位共平面多氯联苯的现有数据估算出了以下TEF值:3,3',4,4',5 - 五氯联苯,0.1;3,3',4,4',5,5'-六氯联苯,0.05;3,3',4,4'-四氯联苯,0.01;2,3,3',4,4'-五氯联苯,0.001;2,3',4,4',5 - 五氯联苯,0.0001;2,3,3',4,4',5 - 六氯联苯,0.0003;2,3,3',4,4',5'-六氯联苯,0.0003;2',3,4,4',5 - 五氯联苯,0.00005;以及2,3,4,4',5 - 五氯联苯,0.0002。在多氯联苯风险评估中应用TEF方法时必须极为谨慎。对实验动物和野生动物研究结果的分析表明,多氯联苯TEQ的预测价值可能因物种和反应而异,因为在多氯联苯混合物中已观察到加性和非加性(拮抗)相互作用。在后一种情况下,TEF方法会显著高估多氯联苯混合物的毒性。使用TEF方法对Aroclor 1260的啮齿动物致癌性数据进行分析表明,这种反应主要与Ah受体无关。因此,以癌症为终点的多氯联苯混合物风险评估不能仅采用TEF方法,还需要更多关于对多氯联苯混合物肿瘤促进活性有贡献的各单个同系物的定量信息。