Suppr超能文献

一种用于皮层非线性运算的典型神经回路。

A canonical neural circuit for cortical nonlinear operations.

作者信息

Kouh Minjoon, Poggio Tomaso

机构信息

Center for Biological and Computational Learning, and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Neural Comput. 2008 Jun;20(6):1427-51. doi: 10.1162/neco.2008.02-07-466.

Abstract

A few distinct cortical operations have been postulated over the past few years, suggested by experimental data on nonlinear neural response across different areas in the cortex. Among these, the energy model proposes the summation of quadrature pairs following a squaring nonlinearity in order to explain phase invariance of complex V1 cells. The divisive normalization model assumes a gain-controlling, divisive inhibition to explain sigmoid-like response profiles within a pool of neurons. A gaussian-like operation hypothesizes a bell-shaped response tuned to a specific, optimal pattern of activation of the presynaptic inputs. A max-like operation assumes the selection and transmission of the most active response among a set of neural inputs. We propose that these distinct neural operations can be computed by the same canonical circuitry, involving divisive normalization and polynomial nonlinearities, for different parameter values within the circuit. Hence, this canonical circuit may provide a unifying framework for several circuit models, such as the divisive normalization and the energy models. As a case in point, we consider a feedforward hierarchical model of the ventral pathway of the primate visual cortex, which is built on a combination of the gaussian-like and max-like operations. We show that when the two operations are approximated by the circuit proposed here, the model is capable of generating selective and invariant neural responses and performing object recognition, in good agreement with neurophysiological data.

摘要

在过去几年中,根据关于皮层不同区域非线性神经反应的实验数据,人们提出了一些不同的皮层操作。其中,能量模型提出在平方非线性之后对正交对进行求和,以解释复杂V1细胞的相位不变性。除法归一化模型假设存在一种增益控制的除法抑制,以解释一组神经元内类似S形的反应曲线。类高斯操作假设存在一种钟形反应,该反应针对突触前输入的特定最优激活模式进行调谐。类最大值操作假设在一组神经输入中选择并传递最活跃的反应。我们提出,对于电路内不同的参数值,这些不同的神经操作可以由相同的规范电路来计算,该电路涉及除法归一化和多项式非线性。因此,这个规范电路可能为几种电路模型提供一个统一的框架,比如除法归一化模型和能量模型。作为一个例子,我们考虑灵长类动物视觉皮层腹侧通路的前馈分层模型,该模型基于类高斯操作和类最大值操作的组合构建。我们表明,当这两种操作由这里提出的电路近似时,该模型能够产生选择性和不变的神经反应并执行物体识别,这与神经生理学数据高度吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验