Suppr超能文献

通过V1神经元的分裂归一化模型实现最优编码。

Optimal coding through divisive normalization models of V1 neurons.

作者信息

Valerio Roberto, Navarro Rafael

机构信息

Instituto de Optica Daza de Valdés (CSIC), Serrano 121, 28006, Madrid, Spain.

出版信息

Network. 2003 Aug;14(3):579-93.

Abstract

Current models of the primary visual cortex (V1) include a linear filtering stage followed by a gain control mechanism that explains some of the nonlinear behaviour of neurons. This nonlinear stage consists of a divisive normalization in which each linear response is squared and then divided by a weighted sum of squared linear responses in a certain neighbourhood plus a constant. Simoncelli and Schwartz (1999 Adv. Neural Inform. Process. Syst. 11 153-9) have suggested that divisive normalization reduces the statistical dependence between neuron responses when the weights are adapted to the statistics of natural images, which is consistent with the efficient coding hypothesis. Nevertheless, there are still important open issues, such as, for example, how to obtain the values for the parameters that minimize statistical dependence? Does divisive normalization give a total independence between responses? In this paper, we present the general mathematical formulation of the first of these two questions. We arrive at an expression which permits us to compute, numerically, the parameters of a quasi-optimal solution adapted to an input set of natural images. This quasi-optimal solution is based on a Gaussian model of the conditional statistics of the coefficients resulting from projecting natural images onto an orthogonal linear basis. Our results show, in general, lower values of mutual information, that is, responses are more independent than those provided by previous approximations.

摘要

当前的初级视觉皮层(V1)模型包括一个线性滤波阶段,随后是一个增益控制机制,该机制解释了神经元的一些非线性行为。这个非线性阶段由一种归一化除法组成,即每个线性响应被平方,然后除以某个邻域内平方线性响应的加权和再加上一个常数。西蒙切利和施瓦茨(1999年,《神经信息处理系统进展》第11卷,第153 - 159页)提出,当归一化除法的权重适应自然图像的统计特性时,它会降低神经元响应之间的统计依赖性,这与有效编码假说相一致。然而,仍然存在一些重要的未解决问题,例如,如何获得使统计依赖性最小化的参数值?归一化除法是否能使响应完全独立?在本文中,我们给出了这两个问题中第一个问题的一般数学公式。我们得出了一个表达式,它使我们能够通过数值计算适应自然图像输入集的准最优解的参数。这个准最优解基于将自然图像投影到正交线性基上所得到的系数的条件统计的高斯模型。我们的结果总体上表明,互信息的值更低,也就是说,响应比以前的近似方法所提供的响应更加独立。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验