Suppr超能文献

使用具有池归一化和调制反馈的典型神经回路模型进行计算。

Computing with a canonical neural circuits model with pool normalization and modulating feedback.

作者信息

Brosch Tobias, Neumann Heiko

机构信息

Institute of Neural Information Processing, University of Ulm, BW 89069, Germany

出版信息

Neural Comput. 2014 Dec;26(12):2735-89. doi: 10.1162/NECO_a_00675. Epub 2014 Sep 23.

Abstract

Evidence suggests that the brain uses an operational set of canonical computations like normalization, input filtering, and response gain enhancement via reentrant feedback. Here, we propose a three-stage columnar architecture of cascaded model neurons to describe a core circuit combining signal pathways of feedforward and feedback processing and the inhibitory pooling of neurons to normalize the activity. We present an analytical investigation of such a circuit by first reducing its detail through the lumping of initial feedforward response filtering and reentrant modulating signal amplification. The resulting excitatory-inhibitory pair of neurons is analyzed in a 2D phase-space. The inhibitory pool activation is treated as a separate mechanism exhibiting different effects. We analyze subtractive as well as divisive (shunting) interaction to implement center-surround mechanisms that include normalization effects in the characteristics of real neurons. Different variants of a core model architecture are derived and analyzed--in particular, individual excitatory neurons (without pool inhibition), the interaction with an inhibitory subtractive or divisive (i.e., shunting) pool, and the dynamics of recurrent self-excitation combined with divisive inhibition. The stability and existence properties of these model instances are characterized, which serve as guidelines to adjust these properties through proper model parameterization. The significance of the derived results is demonstrated by theoretical predictions of response behaviors in the case of multiple interacting hypercolumns in a single and in multiple feature dimensions. In numerical simulations, we confirm these predictions and provide some explanations for different neural computational properties. Among those, we consider orientation contrast-dependent response behavior, different forms of attentional modulation, contrast element grouping, and the dynamic adaptation of the silent surround in extraclassical receptive field configurations, using only slight variations of the same core reference model.

摘要

有证据表明,大脑使用一组标准的运算方式,如归一化、输入过滤以及通过折返反馈增强响应增益。在此,我们提出一种由级联模型神经元组成的三阶段柱状结构,以描述一个核心回路,该回路结合了前馈和反馈处理的信号通路以及神经元的抑制性汇聚,从而使活动归一化。我们首先通过对初始前馈响应过滤和折返调制信号放大进行合并来简化其细节,进而对这样一个回路进行分析研究。在二维相空间中分析由此产生的兴奋性 - 抑制性神经元对。将抑制性池激活视为一种表现出不同效应的单独机制。我们分析减法以及除法(分流)相互作用,以实现中心 - 环绕机制,该机制在真实神经元的特性中包括归一化效应。推导并分析了核心模型架构的不同变体——特别是单个兴奋性神经元(无池抑制)、与抑制性减法或除法(即分流)池的相互作用以及具有除法抑制的递归自激动力学。表征了这些模型实例的稳定性和存在特性,这些特性可作为通过适当的模型参数化来调整这些特性的指导原则。通过对单个和多个特征维度中多个相互作用的超柱情况下响应行为的理论预测,证明了所得结果的重要性。在数值模拟中,我们证实了这些预测,并对不同的神经计算特性提供了一些解释。其中,我们仅使用相同核心参考模型的微小变化,考虑了方向对比度依赖的响应行为、不同形式的注意力调制、对比度元素分组以及超经典感受野配置中沉默环绕的动态适应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验