Center for Lawrence Livermore National Laboratory, Applied Scientific Computing, University of California, Livermore, CA 94551, USA.
IEEE Trans Image Process. 2001;10(11):1659-69. doi: 10.1109/83.967394.
In our previous work, we used finite element models to determine nonrigid motion parameters and recover unknown local properties of objects given correspondence data recovered with snakes or other tracking models. In this paper, we present a novel multiscale approach to recovery of nonrigid motion from sequences of registered intensity and range images. The main idea of our approach is that a finite element (FEM) model incorporating material properties of the object can naturally handle both registration and deformation modeling using a single model-driving strategy. The method includes a multiscale iterative algorithm based on analysis of the undirected Hausdorff distance to recover correspondences. The method is evaluated with respect to speed and accuracy. Noise sensitivity issues are addressed. Advantages of the proposed approach are demonstrated using man-made elastic materials and human skin motion. Experiments with regular grid features are used for performance comparison with a conventional approach (separate snakes and FEM models). It is shown, however, that the new method does not require a sampling/correspondence template and can adapt the model to available object features. Usefulness of the method is presented not only in the context of tracking and motion analysis, but also for a burn scar detection application.
在之前的工作中,我们使用有限元模型来确定非刚体运动参数,并根据蛇形模型或其他跟踪模型恢复的对应数据来恢复对象的未知局部属性。在本文中,我们提出了一种新颖的多尺度方法,用于从注册的强度和距离图像序列中恢复非刚体运动。我们方法的主要思想是,一个包含物体材料属性的有限元(FEM)模型可以使用单一的模型驱动策略自然地处理注册和变形建模。该方法包括一个基于无向 Hausdorff 距离分析的多尺度迭代算法,用于恢复对应关系。该方法的速度和准确性进行了评估。解决了噪声敏感性问题。使用人造弹性材料和人体皮肤运动演示了所提出方法的优点。使用规则网格特征的实验用于与传统方法(分离的蛇形模型和 FEM 模型)进行性能比较。然而,结果表明,新方法不需要采样/对应模板,并且可以使模型适应可用的对象特征。该方法不仅在跟踪和运动分析的背景下有用,而且在烧伤疤痕检测应用中也很有用。