Hasan S R, Siong N K
VLSI Res. Lab., Universiti Sains Malaysia, Perak.
IEEE Trans Neural Netw. 1997;8(2):424-36. doi: 10.1109/72.557697.
In this paper emerging parallel/distributed architectures are explored for the digital VLSI implementation of adaptive bidirectional associative memory (BAM) neural network. A single instruction stream many data stream (SIMD)-based parallel processing architecture, is developed for the adaptive BAM neural network, taking advantage of the inherent parallelism in BAM. This novel neural processor architecture is named the sliding feeder BAM array processor (SLiFBAM). The SLiFBAM processor can be viewed as a two-stroke neural processing engine, It has four operating modes: learn pattern, evaluate pattern, read weight, and write weight. Design of a SLiFBAM VLSI processor chip is also described. By using 2-mum scalable CMOS technology, a SLiFBAM processor chip with 4+4 neurons and eight modules of 256x5 bit local weight-storage SRAM, was integrated on a 6.9x7.4 mm(2) prototype die. The system architecture is highly flexible and modular, enabling the construction of larger BAM networks of up to 252 neurons using multiple SLiFBAM chips.
本文探讨了用于自适应双向联想记忆(BAM)神经网络数字VLSI实现的新兴并行/分布式架构。利用BAM中固有的并行性,为自适应BAM神经网络开发了一种基于单指令流多数据流(SIMD)的并行处理架构。这种新颖的神经处理器架构被命名为滑动馈送器BAM阵列处理器(SLiFBAM)。SLiFBAM处理器可被视为一种二冲程神经处理引擎,它有四种操作模式:学习模式、评估模式、读取权重和写入权重。还描述了SLiFBAM VLSI处理器芯片的设计。通过使用2微米可扩展CMOS技术,一个具有4 + 4个神经元以及八个256×5位本地权重存储SRAM模块的SLiFBAM处理器芯片被集成在一个6.9×7.4平方毫米的原型芯片上。该系统架构具有高度的灵活性和模块化,能够使用多个SLiFBAM芯片构建多达252个神经元的更大BAM网络。