Suppr超能文献

具有O(N)复杂度的胜者全得电路。

K-winners-take-all circuit with O(N) complexity.

作者信息

Urahama K, Nagao T

机构信息

Dept. of Comput. Sci. and Electron., Kyusyu Inst. of Technol., Fukuoka.

出版信息

IEEE Trans Neural Netw. 1995;6(3):776-8. doi: 10.1109/72.377986.

Abstract

Presents a k-winners-take-all circuit that is an extension of the winner-take-all circuit by Lazzaro et al. (1989). The problem of selecting the largest k numbers is formulated as a mathematical programming problem whose solution scheme, based on the Lagrange multiplier method, is directly implemented on an analog circuit. The wire length in this circuit grows only linearly with the number of elements, and the circuit is more suitable for real-time processing than the Hopfield networks because the present circuit produces the solution almost instantaneously-in contrast to the Hopfield network, which requires transient convergence to the solution from a precise initial state. The selection resolution in the present circuit is, however, only finite in contrast to the almost infinite resolution in the Hopfield networks.

摘要

提出了一种k胜者全得电路,它是Lazzaro等人(1989年)的胜者全得电路的扩展。选择最大的k个数的问题被表述为一个数学规划问题,其基于拉格朗日乘数法的解决方案直接在模拟电路上实现。该电路中的线长仅随元件数量线性增长,并且与霍普菲尔德网络相比,该电路更适合实时处理,因为与需要从精确初始状态瞬态收敛到解的霍普菲尔德网络不同,本电路几乎能瞬间产生解。然而,与霍普菲尔德网络中几乎无限的分辨率相比,本电路中的选择分辨率是有限的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验