Suppr超能文献

利用增广拉格朗日乘子提高霍普菲尔德型神经网络的收敛性和求解质量。

Improving convergence and solution quality of Hopfield-type neural networks with augmented Lagrange multipliers.

作者信息

Li S Z

机构信息

Sch. of Electr. and Electron. Eng., Nanyang Technol. Inst.

出版信息

IEEE Trans Neural Netw. 1996;7(6):1507-16. doi: 10.1109/72.548179.

Abstract

Hopfield-type networks convert a combinatorial optimization to a constrained real optimization and solve the latter using the penalty method. There is a dilemma with such networks: when tuned to produce good-quality solutions, they can fail to converge to valid solutions; and when tuned to converge, they tend to give low-quality solutions. This paper proposes a new method, called the augmented Lagrange-Hopfield (ALH) method, to improve Hopfield-type neural networks in both the convergence and the solution quality in solving combinatorial optimization. It uses the augmented Lagrange method, which combines both the Lagrange and the penalty methods, to effectively solve the dilemma. Experimental results on the travelling salesman problem (TSP) show superiority of the ALH method over the existing Hopfield-type neural networks in the convergence and solution quality. For the ten-city TSPs, ALH finds the known optimal tour with 100% success rate, as the result of 1000 runs with different random initializations. For larger size problems, it also finds remarkably better solutions than the compared methods while always converging to valid tours.

摘要

霍普菲尔德型网络将组合优化转化为约束实优化,并使用罚函数法求解后者。这类网络存在一个两难困境:当调整网络以产生高质量解时,它们可能无法收敛到有效解;而当调整网络以实现收敛时,它们往往给出低质量解。本文提出一种名为增广拉格朗日 - 霍普菲尔德(ALH)方法的新方法,以在解决组合优化问题时,在收敛性和解质量两方面改进霍普菲尔德型神经网络。它使用结合了拉格朗日方法和罚函数法的增广拉格朗日方法,有效地解决了这一两难困境。在旅行商问题(TSP)上的实验结果表明,ALH方法在收敛性和解质量方面优于现有的霍普菲尔德型神经网络。对于十城市的TSP问题,经过1000次不同随机初始化的运行,ALH以100%的成功率找到了已知的最优路径。对于更大规模的问题,它也能找到比对比方法显著更好的解,同时始终收敛到有效路径。

相似文献

2
Solving the TSP by the AALHNN algorithm.用 AALHNN 算法求解旅行商问题。
Math Biosci Eng. 2022 Jan 25;19(4):3427-3448. doi: 10.3934/mbe.2022158.
4
Stability analysis of higher-order neural networks for combinatorial optimization.
Int J Neural Syst. 2002 Jun-Aug;12(3-4):177-86. doi: 10.1142/S0129065702001151.
9
Improving local minima of Hopfield networks with augmented Lagrange multipliers for large scale TSPs.
Neural Netw. 2000 Apr;13(3):283-5. doi: 10.1016/s0893-6080(00)00012-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验