Hu Kan-Nian, Song Changsik, Yu Hsiao-Hua, Swager Timothy M, Griffin Robert G
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Chem Phys. 2008 Feb 7;128(5):052302. doi: 10.1063/1.2816783.
To date, the cross effect (CE) and thermal mixing (TM) mechanisms have consistently provided the largest enhancements in dynamic nuclear polarization (DNP) experiments performed at high magnetic fields. Both involve a three-spin electron-electron-nucleus process whose efficiency depends primarily on two electron-electron interactions--the interelectron distance R and the correct electron paramagnetic resonance (EPR) frequency separation that matches the nuclear Larmor frequency, /omega(e2)-omega(e1)/ = omega(n). Biradicals, for example, two 2,2,6,6-tetramethyl-piperidine-1-oxyls (TEMPOs) tethered with a molecular linker, can in principle constrain both the distance and relative g-tensor orientation between two unpaired electrons, allowing these two spectral parameters to be optimized for the CE and TM. To verify this hypothesis, we synthesized a series of biradicals--bis-TEMPO tethered by n ethylene glycol units (a.k.a. BTnE)--that show an increasing DNP enhancement with a decreasing tether length. Specifically at 90 K and 5 T, the enhancement grew from approximately 40 observed with 10 mM monomeric TEMPO, where the average R approximately 56 A corresponding to electron-electron dipolar coupling constant omega(d)2 pi = 0.3 MHz, to approximately 175 with 5 mM BT2E (10 mM electrons) which has R approximately 13 A with omega(d)2 pi = 24 MHz. In addition, we compared these DNP enhancements with those from three biradicals having shorter and more rigid tethers-bis-TEMPO tethered by oxalyl amide, bis-TEMPO tethered by the urea structure, and 1-(TEMPO-4-oxyl)-3-(TEMPO-4-amino)-propan-2-ol (TOTAPOL) TOTAPOL is of particular interest since it is soluble in aqueous media and compatible with DNP experiments on biological systems such as membrane and amyloid proteins. The interelectron distances and relative g-tensor orientations of all of these biradicals were characterized with an analysis of their 9 and 140 GHz continuous-wave EPR lineshapes. The results show that the largest DNP enhancements are observed with BT2E and TOTAPOL that have shorter tethers and the two TEMPO moieties are oriented so as to satisfy the matching condition for the CE.
迄今为止,交叉效应(CE)和热混合(TM)机制在高磁场下进行的动态核极化(DNP)实验中始终提供了最大的增强效果。两者都涉及一个三自旋电子 - 电子 - 核过程,其效率主要取决于两种电子 - 电子相互作用——电子间距离R以及与核拉莫尔频率匹配的正确电子顺磁共振(EPR)频率间隔,即/ω(e2) - ω(e1)/ = ω(n)。例如,双自由基,即通过分子连接体连接的两个2,2,6,6 - 四甲基 - 哌啶 - 1 - 氧基(TEMPO),原则上可以限制两个未成对电子之间的距离和相对g张量取向,从而使这两个光谱参数针对CE和TM进行优化。为了验证这一假设,我们合成了一系列双自由基——由n个乙二醇单元连接的双TEMPO(又称BTnE)——其DNP增强效果随着连接体长度的减小而增加。具体而言,在90 K和5 T时,增强效果从10 mM单体TEMPO时观察到的约40增长到5 mM BT2E(10 mM电子)时的约175,其中10 mM单体TEMPO的平均R约为56 Å,对应电子 - 电子偶极耦合常数ω(d)2π = 0.3 MHz,而5 mM BT2E的R约为13 Å,ω(d)2π = 24 MHz。此外,我们将这些DNP增强效果与另外三种具有更短且更刚性连接体的双自由基的增强效果进行了比较——通过草酰酰胺连接的双TEMPO、通过尿素结构连接的双TEMPO以及1 - (TEMPO - 4 - 氧基) - 3 - (TEMPO - 4 - 氨基) - 丙 - 2 - 醇(TOTAPOL)。TOTAPOL特别受关注,因为它可溶于水性介质,并且与诸如膜蛋白和淀粉样蛋白等生物系统的DNP实验兼容。所有这些双自由基的电子间距离和相对g张量取向通过对其9 GHz和140 GHz连续波EPR线形的分析进行了表征。结果表明,BT2E和TOTAPOL由于连接体较短而观察到最大的DNP增强效果,并且两个TEMPO部分的取向满足CE的匹配条件。