Suppr超能文献

使用广义牛顿法的马尔可夫重建。

Markovian reconstruction using a GNC approach.

作者信息

Nikolova M

机构信息

UFR Math. et Inf., Univ. Rene Descartes, Paris, France.

出版信息

IEEE Trans Image Process. 1999;8(9):1204-20. doi: 10.1109/83.784433.

Abstract

This paper is concerned with the reconstruction of images (or signals) from incomplete, noisy data, obtained at the output of an observation system. The solution is defined in maximum a posteriori (MAP) sense and it appears as the global minimum of an energy function joining a convex data-fidelity term and a Markovian prior energy. The sought images are composed of nearly homogeneous zones separated by edges and the prior term accounts for this knowledge. This term combines general nonconvex potential functions (PFs) which are applied to the differences between neighboring pixels. The resultant MAP energy generally exhibits numerous local minima. Calculating its local minimum, placed in the vicinity of the maximum likelihood estimate, is inexpensive but the resultant estimate is usually disappointing. Optimization using simulated annealing is practical only in restricted situations. Several deterministic suboptimal techniques approach the global minimum of special MAP energies, employed in the field of image denoising, at a reasonable numerical cost. The latter techniques are not directly applicable to general observation systems, nor to general Markovian prior energies. This work is devoted to the generalization of one of them, the graduated nonconvexity (GNC) algorithm, in order to calculate nearly-optimal MAP solutions in a wide range of situations. In fact, GNC provides a solution by tracking a set of minima along a sequence of approximate energies, starting from a convex energy and progressing toward the original energy. In this paper, we develop a common method to derive efficient GNC-algorithms for the minimization of MAP energies which arise in the context of any observation system giving rise to a convex data-fidelity term and of Markov random field (MRF) energies involving any nonconvex and/or nonsmooth PFs. As a side-result, we propose how to construct pertinent initializations which allow us to obtain meaningful solutions using local minimization of these MAP energies. Two numerical experiments-an image deblurring and an emission tomography reconstruction-illustrate the performance of the proposed technique.

摘要

本文关注从观测系统输出端获取的不完整、有噪声的数据中重建图像(或信号)。该解决方案在最大后验(MAP)意义下定义,它表现为一个能量函数的全局最小值,该能量函数由一个凸数据保真项和一个马尔可夫先验能量组成。所寻求的图像由被边缘分隔的近乎均匀的区域组成,先验项考虑了这一特性。该项结合了应用于相邻像素间差异的一般非凸势函数(PFs)。由此产生的MAP能量通常呈现出众多局部最小值。计算位于最大似然估计附近的局部最小值成本较低,但所得估计通常不尽人意。使用模拟退火进行优化仅在受限情况下可行。几种确定性次优技术以合理的数值成本逼近图像去噪领域中使用的特殊MAP能量的全局最小值。后一种技术不能直接应用于一般观测系统,也不能应用于一般的马尔可夫先验能量。这项工作致力于其中一种技术——渐进非凸性(GNC)算法的推广,以便在广泛的情况下计算近乎最优的MAP解。实际上,GNC通过沿着一系列近似能量追踪一组最小值来提供解决方案,从凸能量开始并向原始能量推进。在本文中,我们开发了一种通用方法来推导有效的GNC算法,用于最小化在任何产生凸数据保真项的观测系统以及涉及任何非凸和/或非光滑PFs的马尔可夫随机场(MRF)能量背景下出现的MAP能量。作为一个附带结果,我们提出了如何构建相关的初始化,这使我们能够通过对这些MAP能量进行局部最小化来获得有意义的解。两个数值实验——图像去模糊和发射断层扫描重建——说明了所提出技术的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验