Suppr超能文献

用于马尔可夫随机场的极大似然参数估计及其在贝叶斯层析成像中的应用。

ML parameter estimation for Markov random fields with applications to Bayesian tomography.

作者信息

Saquib S S, Bouman C A, Sauer K

机构信息

Polaroid Corp., Cambridge, MA 02139, USA.

出版信息

IEEE Trans Image Process. 1998;7(7):1029-44. doi: 10.1109/83.701163.

Abstract

Markov random fields (MRF's) have been widely used to model images in Bayesian frameworks for image reconstruction and restoration. Typically, these MRF models have parameters that allow the prior model to be adjusted for best performance. However, optimal estimation of these parameters(sometimes referred to as hyper parameters) is difficult in practice for two reasons: i) direct parameter estimation for MRF's is known to be mathematically and numerically challenging; ii)parameters can not be directly estimated because the true image cross section is unavailable.In this paper, we propose a computationally efficient scheme to address both these difficulties for a general class of MRF models,and we derive specific methods of parameter estimation for the MRF model known as generalized Gaussian MRF (GGMRF).The first section of the paper derives methods of direct estimation of scale and shape parameters for a general continuously valued MRF. For the GGMRF case, we show that the ML estimate of the scale parameter, sigma, has a simple closed-form solution, and we present an efficient scheme for computing the ML estimate of the shape parameter, p, by an off-line numerical computation of the dependence of the partition function on p.The second section of the paper presents a fast algorithm for computing ML parameter estimates when the true image is unavailable. To do this, we use the expectation maximization(EM) algorithm. We develop a fast simulation method to replace the E-step, and a method to improve parameter estimates when the simulations are terminated prior to convergence.Experimental results indicate that our fast algorithms substantially reduce computation and result in good scale estimates for real tomographic data sets.

摘要

马尔可夫随机场(MRF)已被广泛用于贝叶斯框架下的图像建模,以进行图像重建和恢复。通常,这些MRF模型具有参数,可对先验模型进行调整以实现最佳性能。然而,由于两个原因,在实践中对这些参数(有时称为超参数)进行最优估计很困难:i)已知对MRF进行直接参数估计在数学和数值计算上具有挑战性;ii)由于真实图像横截面不可用,无法直接估计参数。在本文中,我们提出了一种计算效率高的方案来解决一般类MRF模型的这两个难题,并推导了称为广义高斯MRF(GGMRF)的MRF模型的具体参数估计方法。本文的第一部分推导了一般连续值MRF的尺度和形状参数的直接估计方法。对于GGMRF情况,我们表明尺度参数sigma的最大似然估计有一个简单的闭式解,并提出了一种通过对配分函数关于p的依赖性进行离线数值计算来计算形状参数p的最大似然估计的有效方案。本文的第二部分提出了一种在真实图像不可用时计算最大似然参数估计的快速算法。为此,我们使用期望最大化(EM)算法。我们开发了一种快速模拟方法来替代E步,并提出了一种在模拟未收敛就终止时改进参数估计的方法。实验结果表明,我们的快速算法大大减少了计算量,并对实际断层扫描数据集给出了良好的尺度估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验