Suppr超能文献

基于快速近似离散最小化的合成孔径雷达(SAR)图像正则化

SAR image regularization with fast approximate discrete minimization.

作者信息

Denis Loïc, Tupin Florence, Darbon Jérôme, Sigelle Marc

机构信息

Institut TELECOM, TELECOM ParisTech, GET/Télécom Paris, France.

出版信息

IEEE Trans Image Process. 2009 Jul;18(7):1588-600. doi: 10.1109/TIP.2009.2019302. Epub 2009 May 27.

Abstract

Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.

摘要

合成孔径雷达(SAR)图像与其他相干成像模态一样,存在斑点噪声。这种噪声的存在使得图像的自动解读成为一项具有挑战性的任务,而降噪通常是成功应用经典图像处理算法的前提条件。人们已经提出了许多方法来滤除斑点噪声。马尔可夫随机场(MRF)建模提供了一种便捷的方式来表达数据保真度约束以及滤波后图像的理想特性。在这种情况下,总变差最小化已被广泛用于在保留图像边缘的同时约束正则化图像中的振荡。斑点噪声服从重尾分布,并且MRF公式会导致一个涉及非凸对数似然项的最小化问题。通过在加权图上计算最小割,可以有效地执行这种最小化。由于内存限制,精确最小化虽然在理论上是可能的,但对于遥感应用所需的大图像来说是无法实现的。近似最小化的现有算法(即α扩展)的计算负担过重,特别是在考虑多个图像的联合正则化时。我们表明,通过对大的试验移动进行基于图割的组合探索,可以在几次迭代中得到令人满意的解决方案。该算法应用于城区SAR图像中幅度和干涉相位的联合正则化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验