Suppr超能文献

基于卡尔曼滤波器训练的递归网络对非线性动力系统的神经控制

Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks.

作者信息

Puskorius G V, Feldkamp L A

机构信息

Res. Lab., Ford Motor Co., Dearborn, MI.

出版信息

IEEE Trans Neural Netw. 1994;5(2):279-97. doi: 10.1109/72.279191.

Abstract

Although the potential of the powerful mapping and representational capabilities of recurrent network architectures is generally recognized by the neural network research community, recurrent neural networks have not been widely used for the control of nonlinear dynamical systems, possibly due to the relative ineffectiveness of simple gradient descent training algorithms. Developments in the use of parameter-based extended Kalman filter algorithms for training recurrent networks may provide a mechanism by which these architectures will prove to be of practical value. This paper presents a decoupled extended Kalman filter (DEKF) algorithm for training of recurrent networks with special emphasis on application to control problems. We demonstrate in simulation the application of the DEKF algorithm to a series of example control problems ranging from the well-known cart-pole and bioreactor benchmark problems to an automotive subsystem, engine idle speed control. These simulations suggest that recurrent controller networks trained by Kalman filter methods can combine the traditional features of state-space controllers and observers in a homogeneous architecture for nonlinear dynamical systems, while simultaneously exhibiting less sensitivity than do purely feedforward controller networks to changes in plant parameters and measurement noise.

摘要

尽管递归网络架构强大的映射和表示能力的潜力已得到神经网络研究界的普遍认可,但递归神经网络尚未广泛用于非线性动态系统的控制,这可能是由于简单梯度下降训练算法相对无效所致。使用基于参数的扩展卡尔曼滤波器算法训练递归网络方面的进展可能提供一种机制,通过该机制这些架构将被证明具有实用价值。本文提出了一种用于训练递归网络的解耦扩展卡尔曼滤波器(DEKF)算法,特别强调其在控制问题中的应用。我们在仿真中展示了DEKF算法在一系列示例控制问题中的应用,这些问题从著名的推车-摆和生物反应器基准问题到汽车子系统、发动机怠速控制。这些仿真表明,通过卡尔曼滤波器方法训练的递归控制器网络可以在非线性动态系统的统一架构中结合状态空间控制器和观测器的传统特征,同时与纯前馈控制器网络相比,对工厂参数变化和测量噪声的敏感性更低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验