Suppr超能文献

Keap1的反应性半胱氨酸残基在决定Nrf2活性中的生理意义。

Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity.

作者信息

Yamamoto Tae, Suzuki Takafumi, Kobayashi Akira, Wakabayashi Junko, Maher Jon, Motohashi Hozumi, Yamamoto Masayuki

机构信息

Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan.

出版信息

Mol Cell Biol. 2008 Apr;28(8):2758-70. doi: 10.1128/MCB.01704-07. Epub 2008 Feb 11.

Abstract

Keap1 and Cul3 constitute a unique ubiquitin E3 ligase that degrades Nrf2, a key activator of cytoprotective genes. Upon exposure to oxidants/electrophiles, the enzymatic activity of this ligase complex is inhibited and the complex fails to degrade Nrf2, resulting in the transcriptional activation of Nrf2 target genes. Keap1 possesses several reactive cysteine residues that covalently bond with electrophiles in vitro. To clarify the functional significance of each Keap1 cysteine residue under physiological conditions, we established a transgenic complementation rescue model. The transgenic expression of mutant Keap1(C273A) and/or Keap1(C288A) protein in Keap1 null mice failed to reverse constitutive Nrf2 activation, indicating that cysteine residues at positions 273 and 288 are essential for Keap1 to repress Nrf2 activity in vivo. In contrast, Keap1(C151S) retained repressor activity and mice expressing this molecule were viable. Mouse embryonic fibroblasts from Keap1(C151S) transgenic mice displayed decreased expression of Nrf2 target genes both before and after an electrophilic challenge, suggesting that Cys151 is important in facilitating Nrf2 activation. These results demonstrate critical roles of the cysteine residues in vivo in maintaining Keap1 function, such that Nrf2 is repressed under quiescent conditions and active in response to oxidants/electrophiles.

摘要

Keap1和Cul3构成一种独特的泛素E3连接酶,可降解细胞保护基因的关键激活因子Nrf2。在暴露于氧化剂/亲电试剂时,这种连接酶复合物的酶活性受到抑制,复合物无法降解Nrf2,导致Nrf2靶基因的转录激活。Keap1拥有几个反应性半胱氨酸残基,在体外可与亲电试剂共价结合。为了阐明在生理条件下每个Keap1半胱氨酸残基的功能意义,我们建立了一个转基因互补拯救模型。在Keap1基因敲除小鼠中,突变型Keap1(C273A)和/或Keap1(C288A)蛋白的转基因表达未能逆转组成型Nrf2激活,这表明273和288位的半胱氨酸残基对于Keap1在体内抑制Nrf2活性至关重要。相比之下,Keap1(C151S)保留了抑制活性,表达该分子的小鼠能够存活。来自Keap1(C151S)转基因小鼠的小鼠胚胎成纤维细胞在亲电攻击前后均显示Nrf2靶基因的表达降低,这表明Cys151在促进Nrf2激活方面很重要。这些结果证明了半胱氨酸残基在体内维持Keap1功能中的关键作用,使得Nrf2在静止条件下受到抑制,并在对氧化剂/亲电试剂的反应中被激活。

相似文献

1
Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity.
Mol Cell Biol. 2008 Apr;28(8):2758-70. doi: 10.1128/MCB.01704-07. Epub 2008 Feb 11.
2
Validation of the multiple sensor mechanism of the Keap1-Nrf2 system.
Free Radic Biol Med. 2012 Aug 15;53(4):817-27. doi: 10.1016/j.freeradbiomed.2012.06.023. Epub 2012 Jun 23.
3
The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
Nitric Oxide. 2011 Aug 1;25(2):153-60. doi: 10.1016/j.niox.2011.02.007. Epub 2011 Mar 6.
5
Characterizations of Three Major Cysteine Sensors of Keap1 in Stress Response.
Mol Cell Biol. 2015 Nov 2;36(2):271-84. doi: 10.1128/MCB.00868-15. Print 2016 Jan 15.
7
Keap1 cysteine 288 as a potential target for diallyl trisulfide-induced Nrf2 activation.
PLoS One. 2014 Jan 28;9(1):e85984. doi: 10.1371/journal.pone.0085984. eCollection 2014.
8
Molecular evolution of Keap1. Two Keap1 molecules with distinctive intervening region structures are conserved among fish.
J Biol Chem. 2008 Feb 8;283(6):3248-3255. doi: 10.1074/jbc.M708702200. Epub 2007 Dec 5.
9
Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2040-5. doi: 10.1073/pnas.0307301101. Epub 2004 Feb 5.

引用本文的文献

1
Dissecting the Keap1/Nrf2 pathway through proteomics.
Curr Opin Toxicol. 2016 Dec;1:118-124. doi: 10.1016/j.cotox.2016.10.007. Epub 2016 Oct 31.
2
Anthrahydroquinone-2,6-Disulfonate Restores Lung Function in COPD Through Keap1/Nrf2 Pathway Activation.
J Inflamm Res. 2025 Jul 18;18:9559-9579. doi: 10.2147/JIR.S524429. eCollection 2025.
6
Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens.
Antioxidants (Basel). 2025 Apr 15;14(4):471. doi: 10.3390/antiox14040471.
8
Thirty years of NRF2: advances and therapeutic challenges.
Nat Rev Drug Discov. 2025 Mar 4. doi: 10.1038/s41573-025-01145-0.
10
Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases.
Redox Biol. 2025 Feb;79:103464. doi: 10.1016/j.redox.2024.103464. Epub 2024 Dec 16.

本文引用的文献

1
Identification of the highly reactive cysteine 151 in the chemopreventive agent-sensor Keap1 protein is method-dependent.
Chem Res Toxicol. 2007 Dec;20(12):1878-84. doi: 10.1021/tx700217c. Epub 2007 Oct 13.
2
Protein S-guanylation by the biological signal 8-nitroguanosine 3',5'-cyclic monophosphate.
Nat Chem Biol. 2007 Nov;3(11):727-35. doi: 10.1038/nchembio.2007.33. Epub 2007 Sep 30.
3
Subcellular localization and cytoplasmic complex status of endogenous Keap1.
Genes Cells. 2007 Oct;12(10):1163-78. doi: 10.1111/j.1365-2443.2007.01118.x.
4
Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response.
Mol Cell Biol. 2007 Nov;27(21):7511-21. doi: 10.1128/MCB.00753-07. Epub 2007 Sep 4.
5
Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism.
Biol Chem. 2006 Oct-Nov;387(10-11):1311-20. doi: 10.1515/BC.2006.164.
6
Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer.
PLoS Med. 2006 Oct;3(10):e420. doi: 10.1371/journal.pmed.0030420.
7
Ebselen, a seleno-organic antioxidant, as an electrophile.
Chem Res Toxicol. 2006 Sep;19(9):1196-204. doi: 10.1021/tx0601105.
8
Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species.
Adv Enzyme Regul. 2006;46:113-40. doi: 10.1016/j.advenzreg.2006.01.007. Epub 2006 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验