Shi Tuo, Falkowski Paul G
Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2510-5. doi: 10.1073/pnas.0711165105. Epub 2008 Feb 11.
Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis, the evolution of which transformed the biology and geochemistry of Earth. The rapid increase in published genomic sequences of cyanobacteria provides the first opportunity to reconstruct events in the evolution of oxygenic photosynthesis on the scale of entire genomes. Here, we demonstrate the overall phylogenetic incongruence among 682 orthologous protein families from 13 genomes of cyanobacteria. However, using principal coordinates analysis, we discovered a core set of 323 genes with similar evolutionary trajectories. The core set is highly conserved in amino acid sequence and contains genes encoding the major components in the photosynthetic and ribosomal apparatus. Many of the key proteins are encoded by genome-wide conserved small gene clusters, which often are indicative of protein-protein, protein-prosthetic group, and protein-lipid interactions. We propose that the macromolecular interactions in complex protein structures and metabolic pathways retard the tempo of evolution of the core genes and hence exert a selection pressure that restricts piecemeal horizontal gene transfer of components of the core. Identification of the core establishes a foundation for reconstructing robust organismal phylogeny in genome space. Our phylogenetic trees constructed from 16S rRNA gene sequences, concatenated orthologous proteins, and the core gene set all suggest that the ancestral cyanobacterium did not fix nitrogen and probably was a thermophilic organism.
蓝细菌是唯一已知能够进行产氧光合作用的原核生物,其进化改变了地球的生物学和地球化学。已发表的蓝细菌基因组序列的迅速增加,为在全基因组规模上重建产氧光合作用进化过程中的事件提供了首个机会。在此,我们展示了来自13个蓝细菌基因组的682个直系同源蛋白家族之间总体系统发育不一致性。然而,通过主坐标分析,我们发现了一组323个具有相似进化轨迹的核心基因。该核心基因集在氨基酸序列上高度保守,并且包含编码光合和核糖体装置中主要成分的基因。许多关键蛋白由全基因组保守的小基因簇编码,这些小基因簇通常指示蛋白-蛋白、蛋白-辅基以及蛋白-脂质相互作用。我们提出,复杂蛋白结构和代谢途径中的大分子相互作用减缓了核心基因的进化速度,因此施加了一种选择压力,限制了核心成分的零散水平基因转移。核心基因的鉴定为在基因组空间中重建稳健的生物系统发育奠定了基础。我们从16S rRNA基因序列、串联直系同源蛋白和核心基因集构建的系统发育树均表明,原始蓝细菌不能固定氮,可能是嗜热生物。