Bachtrog Doris, Hom Emily, Wong Karen M, Maside Xulio, de Jong Pieter
Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
Genome Biol. 2008;9(2):R30. doi: 10.1186/gb-2008-9-2-r30. Epub 2008 Feb 12.
Y chromosomes are derived from ordinary autosomes and degenerate because of a lack of recombination. Well-studied Y chromosomes only have few of their original genes left and contain little information about their evolutionary origin. Here, we take advantage of the recently formed neo-Y chromosome of Drosophila miranda to study the processes involved in Y degeneration on a genomic scale.
We obtained sequence information from 14 homologous bacterial artificial chromosome (BAC) clones from the neo-X and neo-Y chromosome of D. miranda, encompassing over 2.5 Mb of neo-sex-linked DNA. A large fraction of neo-Y DNA is composed of repetitive and transposable-element-derived DNA (20% of total DNA) relative to their homologous neo-X linked regions (1%). The overlapping regions of the neo-sex linked BAC clones contain 118 gene pairs, half of which are pseudogenized on the neo-Y. Pseudogenes evolve significantly faster on the neo-Y than functional genes, and both functional and non-functional genes show higher rates of protein evolution on the neo-Y relative to their neo-X homologs. No heterogeneity in levels of degeneration was detected among the regions investigated. Functional genes on the neo-Y are under stronger evolutionary constraint on the neo-X, but genes were found to degenerate randomly on the neo-Y with regards to their function or sex-biased expression patterns.
Patterns of genome evolution in D. miranda demonstrate that degeneration of a recently formed Y chromosome can proceed very rapidly, by both an accumulation of repetitive DNA and degeneration of protein-coding genes. Our data support a random model of Y inactivation, with little heterogeneity in degeneration among genomic regions, or between functional classes of genes or genes with sex-biased expression patterns.
Y染色体起源于普通常染色体,因缺乏重组而退化。经过充分研究的Y染色体仅保留了少数原始基因,几乎没有关于其进化起源的信息。在此,我们利用近期形成的米兰达果蝇新Y染色体,在基因组规模上研究Y染色体退化所涉及的过程。
我们从米兰达果蝇新X和新Y染色体的14个同源细菌人工染色体(BAC)克隆中获得了序列信息,涵盖超过2.5 Mb的新性连锁DNA。相对于同源的新X连锁区域(1%),新Y染色体DNA的很大一部分由重复和转座元件衍生的DNA组成(占总DNA的20%)。新性连锁BAC克隆的重叠区域包含118个基因对,其中一半在新Y染色体上已假基因化。假基因在新Y染色体上的进化速度明显快于功能基因,并且功能基因和非功能基因在新Y染色体上相对于其新X同源基因均显示出更高的蛋白质进化速率。在所研究的区域中未检测到退化水平的异质性。新Y染色体上的功能基因在新X染色体上受到更强的进化限制,但发现基因在新Y染色体上根据其功能或性别偏向表达模式随机退化。
米兰达果蝇的基因组进化模式表明,新形成的Y染色体的退化可以通过重复DNA的积累和蛋白质编码基因的退化非常迅速地进行。我们的数据支持Y染色体失活的随机模型,在基因组区域之间、功能基因类别之间或具有性别偏向表达模式的基因之间,退化几乎没有异质性。