Xie Siyu, Li Jun, Chen Wanyan, Fong Lydia J M, Huang Chunhua, Feng Yan, Ai Qingbo, Zhao Mian, Mank Judith E, Wu Hua
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China 430079.
Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Genome Res. 2025 Jun 2;35(6):1325-1336. doi: 10.1101/gr.280161.124.
Unlike the highly degenerated sex chromosomes in birds and mammals, many amphibians possess homomorphic sex chromosomes, which may result from high rates of sex chromosome turnover and/or occasional recombination between the X and Y (or Z and W) Chromosomes. Yet, the molecular basis for maintaining homomorphy remains elusive, particularly the power of rare recombination events to arrest sex chromosome divergence. Here, we identified sex chromosomes of the Emei moustache toad and examined potential mechanisms of maintaining homomorphy. Although the sex chromosomes are homomorphic, we observed an extensive region of X-Y genetic differentiation, spanning ∼349 Mb, among the largest known to date in vertebrates. Despite this large size and the assumption that inversions catalyze recombination suppression between the X and Y Chromosomes, we found little evidence of XY structural variation. Using a high-density linkage map, we revealed that the large region of X-Y divergence was likely owing to the emergence of sex determining factors in the region of ancestrally low male recombination. Population genetic data showed high rates of sex-reversed XY-type females, and recombination between the X and Y Chromosomes in these individuals helps maintain the integrity of sequence and gene expression on the Y Chromosome. Finally, we revealed modest sexualization of gene expression within the sex chromosomes, and identified candidate genes involved in gonadal development. Our results not only show remarkable maintenance of vast sex differentiated regions under ancestral low recombination but also emphasize the sustaining power of X-Y recombination for homomorphic chromosomes over large genomic regions.
与鸟类和哺乳动物高度退化的性染色体不同,许多两栖动物拥有同形性染色体,这可能是由于性染色体更替率高和/或X和Y(或Z和W)染色体之间偶尔发生重组所致。然而,维持同形性的分子基础仍然难以捉摸,尤其是罕见重组事件阻止性染色体分化的能力。在这里,我们鉴定了峨眉髭蟾的性染色体,并研究了维持同形性的潜在机制。尽管性染色体是同形的,但我们观察到X-Y遗传分化的广泛区域,跨越约349兆碱基对,是迄今为止脊椎动物中已知最大的区域之一。尽管这个区域很大,并且假设倒位催化X和Y染色体之间的重组抑制,但我们几乎没有发现XY结构变异的证据。利用高密度连锁图谱,我们发现X-Y分化的大区域可能是由于在祖先雄性重组率低的区域出现了性别决定因素。群体遗传数据显示,XY型雌性性反转的发生率很高,这些个体中X和Y染色体之间的重组有助于维持Y染色体上序列和基因表达的完整性。最后,我们揭示了性染色体内基因表达的适度性别化,并确定了参与性腺发育的候选基因。我们的结果不仅表明在祖先低重组情况下巨大的性别分化区域得到了显著维持,而且强调了X-Y重组在大基因组区域对同形染色体的维持能力。