Suppr超能文献

一种用于糖尿病眼底图像分层分级的分类系统:初步研究。

A sorting system for hierarchical grading of diabetic fundus images: a preliminary study.

作者信息

Yen G G, Leong W-F

机构信息

School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078-5032, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2008 Jan;12(1):118-30. doi: 10.1109/TITB.2007.910453.

Abstract

Diabetic retinopathy is a leading cause of blindness in developed countries. Diabetic patients can prevent severe visual loss by attending regular eye examinations and receiving timely treatments. In the United States, standard protocols have been developed and refined for years to provide better screening and evaluation procedures of the fundus images. Due to the emerging number of diabetic retinopathy cases, accurate and efficient evaluations of the fundus images have become a serious burden for the ophthalmologists or care providers. While diabetic retinopathy remains too complicated to call for an automatic diagnosis system, an efficient tool to facilitate the grading process with a limited number of personnel is in great demand. The current study is to develop a sorting system with a user-friendly interface, based upon the standardized early treatment diabetic retinopathy study (ETDRS) protocol, to assist the professional graders. The raw fundus images will be screened and assigned to different graders according to their skill levels and experiences. The developed hierarchical sorting process will greatly support the graders and enhance their efficiency and throughput. The proposed hybrid intelligent system with multilevel knowledge representation is used to construct this sorting system. A preliminary case study is conducted using only the features of the spot lesion group coupled with the ETDRS standard to demonstrate its feasibility and performance. The results obtained from the case study show a promising future.

摘要

糖尿病性视网膜病变是发达国家失明的主要原因。糖尿病患者可通过定期进行眼部检查并及时接受治疗来预防严重视力丧失。在美国,多年来一直在制定和完善标准方案,以提供更好的眼底图像筛查和评估程序。由于糖尿病性视网膜病变病例数量不断增加,对眼底图像进行准确高效的评估已成为眼科医生或护理人员的一项沉重负担。虽然糖尿病性视网膜病变仍然过于复杂,无法依靠自动诊断系统,但迫切需要一种有效的工具,以便在人员有限的情况下简化分级过程。当前的研究旨在基于标准化的糖尿病性视网膜病变早期治疗研究(ETDRS)方案,开发一种具有用户友好界面的分类系统,以协助专业分级人员。原始眼底图像将根据分级人员的技能水平和经验进行筛选并分配给不同的分级人员。所开发的分层分类过程将极大地支持分级人员,提高他们的效率和工作量。所提出的具有多层次知识表示的混合智能系统用于构建此分类系统。仅使用点状病变组的特征并结合ETDRS标准进行了初步案例研究,以证明其可行性和性能。案例研究获得的结果显示出良好的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验