基于深度学习的采用象限集成模型的糖尿病视网膜病变严重程度分级系统。

Deep Learning-Based Diabetic Retinopathy Severity Grading System Employing Quadrant Ensemble Model.

机构信息

Department of Electronics and Communication Engineering, JUIT Waknaghat, Solan, HP, India.

Department of CDC, NITTTR, Chandigarh, India.

出版信息

J Digit Imaging. 2021 Apr;34(2):440-457. doi: 10.1007/s10278-021-00418-5. Epub 2021 Mar 8.

Abstract

The diabetic retinopathy accounts in the deterioration of retinal blood vessels leading to a serious compilation affecting the eyes. The automated DR diagnosis frameworks are critically important for the early identification and detection of these eye-related problems, helping the ophthalmic experts in providing the second opinion for effectual treatment. The deep learning techniques have evolved as an improvement over the conventional approaches, which are dependent on the handcrafted feature extraction. To address the issue of proficient DR discrimination, the authors have proposed a quadrant ensemble automated DR grading approach by implementing InceptionResnet-V2 deep neural network framework. The presented model incorporates histogram equalization, optical disc localization, and quadrant cropping along with the data augmentation step for improving the network performance. A superior accuracy performance of 93.33% is observed for the proposed framework, and a significant reduction of 0.325 is noticed in the cross-entropy loss function for MESSIDOR benchmark dataset; however, its validation utilizing the latest IDRiD dataset establishes its generalization ability. The accuracy improvement of 13.58% is observed when the proposed QEIRV-2 model is compared with the classical Inception-V3 CNN model. To justify the viability of the proposed framework, its performance is compared with the existing state-of-the-art approaches and 25.23% of accuracy improvement is observed.

摘要

糖尿病性视网膜病变是由于视网膜血管恶化导致的严重并发症,影响眼睛健康。自动化的糖尿病性视网膜病变诊断框架对于早期识别和检测这些眼部问题至关重要,有助于眼科专家提供有效的治疗意见。与依赖手工特征提取的传统方法相比,深度学习技术已经取得了显著的进步。为了解决熟练区分糖尿病性视网膜病变的问题,作者提出了一种基于四象限集成的自动化糖尿病性视网膜病变分级方法,该方法采用了 InceptionResnet-V2 深度神经网络框架。所提出的模型结合了直方图均衡化、视盘定位和四象限裁剪以及数据增强步骤,以提高网络性能。在 MESSIDOR 基准数据集上,所提出的框架表现出了 93.33%的卓越准确性,交叉熵损失函数显著降低了 0.325;然而,利用最新的 IDRiD 数据集对其进行验证,证明了其泛化能力。与经典的 Inception-V3 CNN 模型相比,所提出的 QEIRV-2 模型的准确性提高了 13.58%。为了验证所提出框架的可行性,将其性能与现有的最先进方法进行了比较,观察到准确性提高了 25.23%。

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索