College of System Engineering, National University of Defense Technology, Sanyi Avenue, Changsha 410073, China.
College of Traffic Engineering, Hunan University of Technology, Zhuzhou 412007, China.
Sensors (Basel). 2019 Mar 23;19(6):1431. doi: 10.3390/s19061431.
The log-ratio (LR) operator is well suited for change detection in synthetic aperture radar (SAR) amplitude or intensity images. In applying the LR operator to change detection in multi-temporal SAR images, a crucial problem is how to develop precise models for the LR statistics. In this study, we first derive analytically the probability density function (PDF) of the LR operator. Subsequently, the PDF of the LR statistics is parameterized by three parameters, i.e., the number of looks, the coherence magnitude, and the true intensity ratio. Then, the maximum-likelihood (ML) estimates of parameters in the LR PDF are also derived. As an example, the proposed statistical model and corresponding ML estimation are used in an operational application, i.e., determining the constant false alarm rate (CFAR) detection thresholds for small target detection between SAR images. The effectiveness of the proposed model and corresponding ML estimation are verified by applying them to measured multi-temporal SAR images, and comparing the results to the well-known generalized Gaussian (GG) distribution; the usefulness of the proposed LR PDF for small target detection is also shown.
对数比(LR)算子非常适合合成孔径雷达(SAR)幅度或强度图像的变化检测。在将 LR 算子应用于多时相 SAR 图像的变化检测中,一个关键问题是如何为 LR 统计量开发精确的模型。在本研究中,我们首先推导出 LR 算子的概率密度函数(PDF)的解析表达式。随后,LR 统计量的 PDF 通过三个参数进行参数化,即视数、相干幅度和真实强度比。然后,还推导出了 LR PDF 中参数的最大似然(ML)估计。作为示例,所提出的统计模型和相应的 ML 估计用于实际应用中,即确定 SAR 图像之间小目标检测的恒虚警率(CFAR)检测门限。通过将其应用于实测多时相 SAR 图像,并将结果与著名的广义高斯(GG)分布进行比较,验证了所提出模型和相应 ML 估计的有效性;还展示了所提出的 LR PDF 对小目标检测的有用性。