Das Barnali, Clegg Limin X, Feuer Eric J, Pickle Linda W
WESTAT, 1650 Research Blvd, Rockville, MD, 20850, USA.
Cancer Causes Control. 2008 Jun;19(5):515-25. doi: 10.1007/s10552-008-9114-0. Epub 2008 Feb 13.
Epidemiologic research into cancer and subsequent decision making to reduce the cancer burden in the population are dependent on the quality of available data. The more reliable the data, the more confident we can be that the decisions made would have the desired effect in the population. The North American Association of Central Cancer Registries (NAACCR) certifies population-based cancer registries, ensuring uniformity of data quality. An important assessment of registry quality is provided by the index of completeness of cancer case ascertainment. NAACCR currently computes this index assuming that the ratio of cancer incidence rates to cancer mortality rates is constant across geographic areas within cancer site, gender, and race groups. NAACCR does not incorporate the variability of this index into the certification process.
We propose an improved method for calculating this index based on a statistical model developed at the National Cancer Institute to predict expected incidence using demographic and lifestyle data. We calculate the variance of our index using statistical approximation.
We use the incidence model to predict the number of new incident cases in each registry area, based on all available registry data. Then we adjust the registry-specific expected numbers for reporting delay and data corrections. The proposed completeness index is the ratio of the observed number to the adjusted prediction for each registry. We calculate the variance of the new index and propose a simple method of incorporating this variability into the certification process.
Better modeling reduces the number of registries with unrealistically high completeness indices. We provide a fuller picture of registry performance by incorporating variability into the certification process.
对癌症的流行病学研究以及随后为减轻人群癌症负担所做的决策,均依赖于现有数据的质量。数据越可靠,我们就越有信心认为所做的决策会在人群中产生预期效果。北美中央癌症登记协会(NAACCR)对基于人群的癌症登记处进行认证,以确保数据质量的一致性。癌症病例确诊完整性指数提供了对登记处质量的一项重要评估。NAACCR目前在计算该指数时假定,在癌症部位、性别和种族组内的不同地理区域,癌症发病率与癌症死亡率之比是恒定的。NAACCR并未将该指数的变异性纳入认证过程。
我们基于美国国立癌症研究所开发的一个统计模型,提出一种改进的计算该指数的方法,该模型利用人口统计学和生活方式数据来预测预期发病率。我们使用统计近似法计算我们所提出指数的方差。
我们利用发病率模型,根据所有可用的登记处数据,预测每个登记处区域的新发病例数。然后我们针对报告延迟和数据校正,调整特定登记处的预期病例数。所提出的完整性指数是每个登记处观察到的病例数与调整后的预测值之比。我们计算新指数的方差,并提出一种将这种变异性纳入认证过程的简单方法。
更好的建模减少了具有不切实际的高完整性指数的登记处数量。通过将变异性纳入认证过程,我们更全面地展现了登记处的表现。