Hasani Masoumeh, Moloudi Mahsa
Faculty of chemistry, Bu-Ali Sina University, Hamedan 65174, Iran.
J Hazard Mater. 2008 Aug 30;157(1):161-9. doi: 10.1016/j.jhazmat.2007.12.096. Epub 2008 Jan 4.
A multicomponent analysis method based on principal component analysis-artificial neural network models (PC-ANN) is proposed for the determination of phenolic compounds. The method relies on the oxidative coupling of phenols (phenol, 2 chlorophenol, 3-chlorophenol and 4-chlorophenol) to N,N-diethyl-p-phenylenediamine in the presence of hexacyanoferrate(III). The reaction monitored at analytical wavelength 680 nm of the dye formed. Phenols can be determined individually over the concentration range 0.1-7.0 microg ml(-1). Differences in the kinetic behavior of the four species were exploited by using PC-ANN, to resolve mixtures of phenol. After reducing the number of kinetic data using principal component analysis, an artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. The optimized ANN allows the simultaneous quantitation of four analytes in mixtures with relative standard errors of prediction in the region of 5% for four species. The results show that PC-ANN is an efficient method for prediction of the four analytes.
提出了一种基于主成分分析 - 人工神经网络模型(PC - ANN)的多组分分析方法用于酚类化合物的测定。该方法基于在高铁氰酸盐(III)存在下,酚类(苯酚、2 - 氯苯酚、3 - 氯苯酚和4 - 氯苯酚)与N,N - 二乙基 - 对苯二胺的氧化偶联反应。反应在形成的染料的分析波长680nm处进行监测。酚类化合物可在0.1 - 7.0μg ml⁻¹的浓度范围内单独测定。利用PC - ANN利用四种物质动力学行为的差异来解析苯酚混合物。在使用主成分分析减少动力学数据数量后,通过应用反向传播学习规则训练了一个由三层节点组成的人工神经网络。优化后的人工神经网络能够同时对混合物中的四种分析物进行定量,四种物质的预测相对标准误差在5%左右。结果表明,PC - ANN是预测这四种分析物的有效方法。