Schofield Geoffrey G, Puhl Henry L, Ikeda Stephen R
Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
J Neurophysiol. 2008 Apr;99(4):1917-27. doi: 10.1152/jn.01170.2007. Epub 2008 Feb 13.
The tetrodotoxin (TTX)-resistant Na(+) current arising from Na(V)1.8-containing channels participates in nociceptive pathways but is difficult to functionally express in traditional heterologous systems. Here, we show that injection of cDNA encoding mouse Na(V)1.8 into the nuclei of rat superior cervical ganglion (SCG) neurons results in TTX-resistant Na(+) currents with amplitudes equal to or exceeding the currents arising from natively expressing channels of mouse dorsal root ganglion (DRG) neurons. The activation and inactivation properties of the heterologously expressed Na(V)1.8 Na(+) channels were similar but not identical to native TTX-resistant channels. Most notably, the half-activation potential of the heterologously expressed Na(V)1.8 channels was shifted about 10 mV toward more depolarized potentials. Fusion of fluorescent proteins to the N- or C-termini of Na(V)1.8 did not substantially affect functional expression in SCG neurons. Unexpectedly, fluorescence was not concentrated at the plasma membrane but found throughout the interior of the neuron in a granular pattern. A similar expression pattern was observed in nodose ganglion neurons expressing the tagged channels. In contrast, expression of tagged Na(V)1.8 in HeLa cells revealed a fluorescence pattern consistent with sequestration in the endoplasmic reticulum, thus providing a basis for poor functional expression in clonal cell lines. Our results establish SCG neurons as a favorable surrogate for the expression and study of molecularly defined Na(V)1.8-containing channels. The data also indicate that unidentified factors may be required for the efficient functional expression of Na(V)1.8 with a biophysical phenotype identical to that found in sensory neurons.
由含Na(V)1.8的通道产生的河豚毒素(TTX)抗性Na(+)电流参与伤害感受通路,但难以在传统异源系统中进行功能性表达。在这里,我们表明将编码小鼠Na(V)1.8的cDNA注射到大鼠颈上神经节(SCG)神经元的细胞核中会产生TTX抗性Na(+)电流,其幅度等于或超过小鼠背根神经节(DRG)神经元天然表达通道产生的电流。异源表达的Na(V)1.8 Na(+)通道的激活和失活特性与天然TTX抗性通道相似但不完全相同。最值得注意的是,异源表达的Na(V)1.8通道的半激活电位向更去极化的电位偏移了约10 mV。将荧光蛋白与Na(V)1.8的N端或C端融合对SCG神经元中的功能性表达没有实质性影响。出乎意料的是,荧光不是集中在质膜上,而是以颗粒状模式分布在整个神经元内部。在表达标记通道的结状神经节神经元中观察到类似的表达模式。相比之下,在HeLa细胞中标记的Na(V)1.8的表达揭示了一种与内质网中隔离一致的荧光模式,从而为克隆细胞系中功能性表达不佳提供了基础。我们的结果确立了SCG神经元是用于表达和研究分子定义的含Na(V)1.8通道的有利替代物。数据还表明,可能需要未确定的因素才能使Na(V)1.8以与感觉神经元中相同的生物物理表型进行有效功能性表达。