Department of Neurology, Yale University School of Medicine, New Haven, CT 06510-8018, USA.
Brain Res. 2013 Sep 5;1529:165-77. doi: 10.1016/j.brainres.2013.07.005. Epub 2013 Jul 11.
Sodium channel NaV1.7 is preferentially expressed in dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function NaV1.7 mutations/variants have been identified in the painful disorders inherited erythromelalgia and small-fiber neuropathy (SFN). DRG neurons transfected with these channel variants display depolarized resting potential, reduced current-threshold, increased firing-frequency and spontaneous firing. Whether the depolarizing shift in resting potential and enhanced spontaneous firing are due to persistent activity of variant channels, or to compensatory changes in other conductance(s) in response to expression of the variant channel, as shown in model systems, has not been studied. We examined the effect of wild-type NaV1.7 and a NaV1.7 mutant channel, D623N, associated with SFN, on resting potential and membrane potential during interspike intervals in DRG neurons. Resting potential in DRG neurons expressing D623N was depolarized compared to neurons expressing WT-NaV1.7. Exposure to TTX hyperpolarized resting potential by 7mV, increased current-threshold, decreased firing-frequency, and reduced NMDG-induced-hyperpolarization in DRG neurons expressing D623N. To assess the contribution of depolarized resting potential to DRG neuron excitability, we mimicked the mutant channel's depolarizing effect by current injection to produce equivalent depolarization; the depolarization decreased current threshold and increased firing-frequency. Voltage-clamp using ramp or repetitive action potentials as commands showed that D623N channels enhance the TTX-sensitive inward current, persistent at subthreshold membrane voltages, as predicted by a Hodgkin-Huxley model. Our results demonstrate that a variant of NaV1.7 associated with painful neuropathy depolarizes resting membrane potential and produces an enhanced inward current during interspike intervals, thereby contributing to DRG neuron hyperexcitability.
钠离子通道 NaV1.7 优先表达于背根神经节(DRG)和交感神经节神经元。在遗传性红斑性肢痛症和小纤维神经病(SFN)等疼痛障碍中已发现功能获得性 NaV1.7 突变/变体。转染这些通道变体的 DRG 神经元显示出去极化的静息电位、降低的电流阈值、增加的放电频率和自发性放电。静息电位的去极化偏移和增强的自发性放电是由于变体通道的持续活动,还是由于对变体通道表达的其他电导(s)的代偿性变化,正如模型系统中所显示的那样,尚未进行研究。我们研究了野生型 NaV1.7 和与 SFN 相关的 NaV1.7 突变体通道 D623N 对 DRG 神经元在尖峰间隔期间的静息电位和膜电位的影响。与表达 WT-NaV1.7 的神经元相比,表达 D623N 的 DRG 神经元的静息电位去极化。TTX 使表达 D623N 的 DRG 神经元的静息电位超极化 7mV,增加电流阈值,降低放电频率,并减少 NMDG 诱导的去极化。为了评估去极化静息电位对 DRG 神经元兴奋性的贡献,我们通过电流注射产生等效去极化来模拟突变通道的去极化效应;去极化降低了电流阈值并增加了放电频率。使用斜坡或重复动作电位作为命令进行电压钳位表明,D623N 通道增强了 TTX 敏感的内向电流,在亚阈值膜电压下持续存在,这与 Hodgkin-Huxley 模型的预测一致。我们的研究结果表明,与疼痛性神经病相关的 NaV1.7 变体使静息膜电位去极化,并在尖峰间隔期间产生增强的内向电流,从而导致 DRG 神经元过度兴奋。