Suppr超能文献

在反向传播训练中使用加性噪声。

Using additive noise in back-propagation training.

作者信息

Holmstrom L, Koistinen P

机构信息

Rolf Nevanlinna Inst., Helsinki Univ.

出版信息

IEEE Trans Neural Netw. 1992;3(1):24-38. doi: 10.1109/72.105415.

Abstract

The possibility of improving the generalization capability of a neural network by introducing additive noise to the training samples is discussed. The network considered is a feedforward layered neural network trained with the back-propagation algorithm. Back-propagation training is viewed as nonlinear least-squares regression and the additive noise is interpreted as generating a kernel estimate of the probability density that describes the training vector distribution. Two specific application types are considered: pattern classifier networks and estimation of a nonstochastic mapping from data corrupted by measurement errors. It is not proved that the introduction of additive noise to the training vectors always improves network generalization. However, the analysis suggests mathematically justified rules for choosing the characteristics of noise if additive noise is used in training. Results of mathematical statistics are used to establish various asymptotic consistency results for the proposed method. Numerical simulations support the applicability of the training method.

摘要

讨论了通过向训练样本引入加性噪声来提高神经网络泛化能力的可能性。所考虑的网络是一个采用反向传播算法训练的前馈分层神经网络。反向传播训练被视为非线性最小二乘回归,加性噪声被解释为生成描述训练向量分布的概率密度的核估计。考虑了两种特定的应用类型:模式分类器网络和对受测量误差影响的数据进行非随机映射的估计。并未证明向训练向量引入加性噪声总能提高网络泛化能力。然而,分析给出了在训练中使用加性噪声时选择噪声特征的数学上合理的规则。利用数理统计结果为所提出的方法建立了各种渐近一致性结果。数值模拟支持了该训练方法的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验